Thermal structure of magnetized neutron star envelopes

Alexander Y. Potekhin,^{1,2} A.D.Kaminker,¹ D.G.Yakovlev,¹ G. Chabrier²

¹Ioffe Physico-Technical Institute, St.Petersburg, Russia ²Ecole Normale Supérieure de Lyon, France

> Conductive opacities, thermal structure, and cooling

> The effects of superstrong magnetic fields

> An application to magnetars

Basic estimates for thermal conductivities

In the "elementary theory" (with energyindependent effective frequency) $\varkappa = a \frac{n_e k^2 T}{m_e^* \nu}, \quad a = \begin{bmatrix} 3/2 & (T \gg T_F) \\ \pi^2/3 & (T \ll T_F) \end{bmatrix}$ $m_e^* = m_e \gamma_F, \quad \gamma_F = \sqrt{1 + x_F^2}, \quad x_F = p_F/m_e c = 0.01009 \ (\rho Z/A)^{1/3}$ $T_F = \frac{m_e c^2}{k} (\gamma_F - 1) \qquad \left(\frac{m_e c^2}{k} = 5.93 \times 10^9 \text{ K}\right)$ Matthiessen rule: $\nu = \nu_{ei} + \nu_{ee}$ $\nu_{ei} + \nu_{ee} \leq \nu \leq \nu_{ei} + \nu_{ee} + \delta \nu, \quad \delta \nu \ll \min(\nu_{ei}, \nu_{ee})$ For non-degenerate electron gas:

$$\begin{split} \nu_{ei} &= \frac{4}{3} \sqrt{\frac{2\pi}{m_e}} \frac{Z^2 e^4}{(kT)^{3/2}} n_i \Lambda_{ei}, \quad \Lambda_{ei} \sim \ln \frac{r_{\max}}{r_{\min}} \\ r_{\max}^{-2} &= 4\pi (n_e + Z^2 n_i) e^2 / kT, \quad r_{\min} = \max(\lambda_T, \, r_{\rm cl}), \qquad \lambda_T = \sqrt{\frac{2\pi\hbar^2}{m_e kT}}, \quad r_{\rm cl} = \frac{Z e^2}{kT} \\ \nu_{ee} &= \frac{8}{3} \sqrt{\frac{\pi}{m_e}} \frac{e^4}{(kT)^{3/2}} n_e \Lambda_{ee} \end{split}$$

For strongly degenerate electron gas:

Electron-ion scattering [Potekhin, Baiko, Haensel, Yakovlev (1999) *A&A*, **346**, 345]

$$\nu_{ei} = \frac{4\pi Z_i^2 e^4}{p_{\rm F}^2 v_{\rm F}} n_i \Lambda_{ei} \qquad \qquad v_{\rm F} = \frac{p_{\rm F}}{m_e^*} = c \frac{x_{\rm r}}{\gamma_{\rm r}} = c \beta$$

Electron-electron scattering [Shternin & Yakovlev (2006) *PRD*, **74**, 043004]

$$kT_{\rm p} = \hbar\omega_{\rm p} = \hbar\sqrt{4\pi e^2 n_e/m_e^*} \qquad y = \sqrt{3}T_{\rm p}/T = (571.6/T_6)\sqrt{\beta} x_{\rm r}$$
$$\nu_{ee} = \frac{m_e c^2 6\alpha_{\rm f}^{3/2}}{\hbar} x_{\rm r} y \sqrt{\beta} I(\beta, y) = 1.66 \times 10^{17} x_{\rm r} y \sqrt{\beta} I(\beta, y) \,{\rm s}^{-1}$$

$$\begin{split} I(\beta, y) &= \frac{1}{\beta} \left(\frac{10}{63} - \frac{8/315}{1+0.0435y} \right) \ln \left(1 + \frac{128.56}{37.1y + 10.83y^2 + y^3} \right) \\ &+ \beta^3 \left(\frac{2.404}{B} + \frac{C - 2.404/B}{1+0.1\beta y} \right) \ln \left[1 + \frac{B}{A\beta y + (\beta y)^2} \right] \\ &+ \frac{\beta}{1+D} \left(C + \frac{18.52\beta^2 D}{B} \right) \ln \left[1 + \frac{B}{Ay + 10.83(\beta y)^2 + (\beta y)^{8/3}} \right] \\ A &= 12.2 + 25.2 \beta^3 \qquad C = 8/105 + 0.05714 \beta^4 \\ B &= A \exp[(0.123636 + 0.016234 \beta^2)/C] \qquad D = 0.1558 y^{1-0.75\beta} \end{split}$$

Partially degenerate electron gas

Electron-ion scattering in arbitrary magnetic field [e.g., Potekhin (1999) *A&A*, **351**, 787]

$$\begin{split} \vec{j}_{e} &= \sigma \cdot \vec{E}^{*} - \alpha \cdot \nabla T, \quad \vec{j}_{T} = \tilde{\alpha} \cdot \vec{E}^{*} - \tilde{\kappa} \cdot \nabla T, \qquad \vec{E}^{*} = \vec{E} + \nabla \mu / e \\ \tilde{\alpha}_{ij}(\mathbf{B}) &= k^{2} T \alpha_{ji}(-\mathbf{B}) = k^{2} T \alpha_{ji}(\mathbf{B}) \\ \begin{bmatrix} \sigma_{ij} \\ \alpha_{ij} \\ \tilde{\kappa}_{ij} \end{bmatrix} = \int \begin{bmatrix} e^{2} \\ e(\mu - \epsilon) / T \\ (\mu - \epsilon)^{2} / T \end{bmatrix} \frac{\mathcal{N}_{B}(\epsilon)}{m_{e}^{*}(\epsilon)} \tau_{ij}(\epsilon) \left(-\frac{\partial f^{(0)}}{\partial \epsilon} \right) \mathrm{d}\epsilon \qquad \mathcal{N}_{B}(\epsilon) = \frac{m_{e}\omega_{c}}{2(\pi\hbar)^{2}} \sum_{n=0}^{n_{\max}} g_{n}p_{n}(\epsilon) \\ p_{n}(\epsilon) &= [(\epsilon/c)^{2} - (m_{e}c)^{2} - 2m_{e}\hbar\omega_{c}n]^{1/2} \\ \tau_{zz} &= \tau_{\parallel}, \quad \tau_{xx} = \frac{\tau_{\perp}}{1 + (\omega_{g}\tau_{\perp})^{2}}, \quad \tau_{yx} = \frac{\omega_{g}\tau_{\perp}^{2}}{1 + (\omega_{g}\tau_{\perp})^{2}} \qquad n_{e} = \int \mathcal{N}_{B}(\epsilon) \left(-\frac{\partial f^{(0)}}{\partial \epsilon} \right) \mathrm{d}\epsilon \end{split}$$

Particular case: no magnetic field

$$\begin{split} \varkappa &= k^2 T(\sigma_2 - \sigma_1^2 / \sigma_0) \\ \mathcal{N}_0(\epsilon) &= p^3 / (3\pi^2 \hbar^3) \end{split} \qquad \begin{aligned} \sigma_n &= \int \frac{\chi^n}{\nu_{ei}(\epsilon)} \frac{\mathcal{N}_0(\epsilon)}{m_e^*(\epsilon)} \frac{e^{\chi}}{(e^{\chi} + 1)^2} \,\mathrm{d}\chi \qquad \qquad \chi = \frac{\epsilon - \mu}{kT} \\ \mathcal{N}_0(\epsilon) &= p^3 / (3\pi^2 \hbar^3) \qquad \qquad m_e^*(\epsilon) = \sqrt{m_e^2 + (p/c)^2} \end{split}$$

Thermal conductivities in a strongly magnetized envelope http://www.ioffe.ru/astro/conduct/

Solid – exact, dots – without *T*-integration, dashes – magnetically non-quantized [Ventura & Potekhin (2001), in *The Neutron Star – Black Hole Connection*, ed. Kouveliotou *et al.* (Dordrecht: Kluwer) 393]

UPDATED ! - Cassisi, Potekhin, Pietrinferni, Catelan, & Salaris (2007) ApJ 661, 1094

Conductive opacities of helium as functions of degeneracy (left) and Coulomb coupling parameter (right): comparison to Hubbard & Lampe tables [Cassisi, Potekhin, Pietrinferni, Catelan, & Salaris (2007) *ApJ* **661**, 1094]

Thermal evolution

Cooling of neutron stars with proton superfluidity in the cores

"Basic cooling curve" of a neutron star (no superfluidity, no exotica)

Cooling of neutron stars with nucleon and exotic cores

[based on Yakovlev *et al.* (2005) *Nucl. Phys. A* **752**, 590c]

Thermal structure with a magnetic field

Temperature drops in magnetized envelopes of neutron stars

[based on Potekhin, Yakovlev, Chabrier, & Gnedin (2003) ApJ 594, 404]

[Chabrier, Saumon, & Potekhin (2006) J.Phys.A: Math. Gen. **39**, 4411; used data from Yakovlev et al. (2005) Nucl. Phys. A **752**, 590c]

Superstrong fields: Energy transport below the plasma frequency may affect the temperature profile and T_s

Temperature profiles in the accreted envelope of a neutron star with "ordinary" (left panel) and superstrong (right) magnetic field, for the local effective temperature 10^{5.5} K, with (solid lines) and without (dashed lines) plasma-frequency cut-off [Potekhin, Yakovlev, Chabrier, & Gnedin (2003) *ApJ* **594**, 404]

Photon-decoupling densities for X- and O-modes for a partially ionized H amosphere, for magnetic field strengths typical of pulsars (blue lines) and magnetars (red lines).

Dot-dashed lines correspond to the radiative surface, the shadowed region corresponds to $E < E_{pl}$.

Effective temperature of the surface as a function of the internal temperature with account of the neutrino emission

Neutrino emission rate in the outer crust

Temperature profiles in magnetized envelopes of neutron stars The effects of neutrino emission, chemical composition, and magnetic fields

Conclusions

> *Magnetic fields* make the temperature distribution highly anisotropic and can be important for evaluation of the effective temperature from observations.

- > A *superstrong* magnetic field
- on the average, makes the envelope more heat-transparent,
- accelerates cooling at late epochs,
- leads to theoretical uncertainties, which require further study.

> Reconciliation of crustal heating models with effective temperatures inferred form observations of some magnetars sensitively depends on the effects of superstrong magnetic fields and chemical composition of the outer envelopes.