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Accreting Neutron Stars

X-Ray Bursts 10-100 sec

(explosive H/He burning) E ~ 103940 erg

Superbursts 10,000 sec
(explosive C burning) E ~ 1042 erg

Burst energy depends on the amount
of the fuel.

Accretion



Count Rate (3—20 keV)
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Long Bursts

1 ¥ In total ~ 10 sources now, L < 0.01 Ly 4, t~1000s, E ~ 10*! ergs
J ¥ One exception, GX 3+1, L ~0.4 L4
J ¥ Most of them are in UCXBs: Porb <1 hr, L < 0.01 L, (in ’t Zand et

al. 2007)
Do they have He white dwarfs as companions?

Important points of low-luminosity sources:
1. Hydrogen, if there 1s any, burns unstably.
2. There is enough time for accreted matter to sediment.

How to produce long bursts?




How to Produce Long Bursts?

X-Ray Bursts ~10-100 sec

(explosive H/He burning)
ATMOSPHERs / Long Bursts ~1000 sec
(explosive He burning?)

Superbursts
(explosive C burning)~10,000 sec

Accretion



Irp process

Hydrogen Burning in Bursts N A
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Temperature [K]

Ignition and Accretion Rate Dependence

(Fujimoto et al. 1981 ; Bildsten 199%)
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Sedimentation

Accretion
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 For low-luminosity sources, accretion timescale 1s long, so that
rsed = Tacc
* There 1s enough time for compositions to redistribute themselves.

 This will change the 1gnition condition of the bursts and the bursts
themselves.



Hydrogen Abundance at Ignition

No Sedimentation
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With Sedimentation

é Less hydrogen left at the
ignition zone when
sedimentation and diffusion
1s considered.

¢ The amount of hydrogen
at the ignition zone is
crucial for the rp process



Temperature [K]

Two Regimes of Accretion Rates
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He ignition curve has a turning point,

y, =5x10" gcm”

Regime 1:0.4% < m/my,, <0.01

H
y ign < y turn

H ignition cannot trigger He ignition
at the same depth.

Regime 2: m/mg,, <0.4%

H
y ign > y turn

H ignition can trigger He ignition
at the same depth.



Regime 1: Weak H Flashes and Long Bursts
“0.4% < 1/, <0.01
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(A) H ignition cannot trigger He
ignition at the same depth.

(B) H burns out slowly (~ 1day) and
keeps the atmosphere cool. A large
amount of He 1s accumulated before
1gnition.

(C) The He ignition could lead to
long bursts.



Long Bursts: (A) weak H flashes
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Temperature doesn’t reach high
enough values to drive energetic
flashes.

Weak H flashes
Convection cannot be initiated

H burns to He via HCNO cycle



Temperature |[K]

Long Bursts: (B) He Ignition Column

Flux =0.1, 0.2 and 1.0 Mev/nucleon

He i1gnition
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¢ High flux from the crust
heats the atmosphere to higher
temperature; He ignites at a
lower column density.
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Long Bursts: (C) Cooling Time

One-zone cooling approximation

TR 4nR? Y ign Qnuc/ LEdd
~ 400 sec (y.,,/10'° g cm™)

ign

agrees with the decay time of the long bursts.



s | | A Two-Zone Model

24t
23 ¢ F acc

9.0 |
85k T

{11

10 F

Zl{e

VY VAAVY
1. ' : : : :

1.0
08 |
0.6
04 1

02 | ‘L

0-0 I T T
330 335 340 345 350 355 360

Randall Cooper & Ramesh Narayan (2007)t (days)

log[ X4y, Zyy. (8 em™)]  log[ Ty, Tye (K) 1 log| Fy (erg em s ]

7y




Long Bursts from Pure He Accretors?

V)
Burst sources of long bursts are g 1010
in UCXBs, suggesting He white ;,
dwarfs as companion stars (in ’t 5 10
Zand et al. 2007)
108
Cumming et al. (2006) did -
calculations for pure He 2
>
accretors. £ 1010
&
But to me, 1t 1s not clear how to ~ 10%
explain the short bursts = R
observed in these sources with a £ 100
pure He accretor. o @
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Regime 2: H-Triggered He Bursts
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A closer look of H-Triggered He Bursts
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H-Trlggered He Burst
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H-Triggered He Burst

» > 50% of the bursts in burst-only sources are bursts of short durations.
Cornelesse et al. 2002

Sedimentation decreases the hydrogen fraction.
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Transition between Two Regimes?
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Transition between Two Regimes

 Alexander Heger (LANL) did 1D multi-zone calculation by using the
Kepler code. The strong short bursts heat up the atmosphere, which 1s
equivalent to the result by raising the mass accretion rate.
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Summary

- There are two regimes of accretion rates in low-luminosity
sources. They are corresponding to weak H flashes/long
bursts and H-triggered He burst, respectively.

Q: How to explain long burst at large accretion rates, as in
GX 3+1 (Chenevez et al. 2006).
Are the sources of long bursts in UCXBs? If so, can they
be H-rich accretors?

- The expected peculiar features of light curves of H-triggered
He burst can tell whether the companion star has H-rich
matter or not.



Messages to...

- nuclear theorists: X-ray bursts modeling depends on the
heating from the crust.

- astronomy observers: X-ray bursts in low-luminosity

sources, search for long bursts, weak H flashes, or peculiar
bursts, need high resolution light curves.



