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Overview

« Condensed matter surfaces
— Atomic physics/chemistry in strong B fields

— QM calculation of properties

» Applications of condensed matter surfaces
— Thermal radiation from a “bare” NS surface

— Vacuum gap pulsar emission models



NS Condensed Matter Surfaces

« Condensed matter surface: atmosphere
"negligibly” thin
* Cohesive energy is the key parameter
Eg|—|E |
— Depends on B field and composition

— Much larger than at B=0

* Work function and density important, too



Bound States in Strong Magnetic
Fields: Atoms
e Critical field:

2
e

d

how, = B,=2.35x10"G

ce

* Binding energy grows with B
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Bound States in Strong Magnetic
Fields: Molecules
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Bound States in Strong Magnetic
Fields: Condensed Matter

 Formation of 3D condensed

B —»
matter: interactions among saEnEEEn
molecular chains =

» Cohesive energy grows w/ B
— Binding energy per cell: |E g|oc 7% g

— Atomic binding energy: \EA\ocZz(ln B)2



Calculation of NS Surface
Properties
o Self-consistent QM calculation

« Simplifications:
— Zero-pressure condensed matter
— No impurities
— Transverse (to B) wave functions predetermined

» Calculations done in the 1980s (Jones,

Neuhauser et al.): condensed matter weakly

bound or unbound at 10" G



New Calculations
(Medin & Lai 2006)

Extended to ~10"™ G
Atoms, molecules, infinite chains, 3D matter

Improved treatment of band structure 2

Density functional theory %
— Exchange-correlation function T e —— |

Em(K) o m/a<n/a - band gap

appropriate for large B

DFT: f drn(r)e, |n(r)] - k
HF.'IZz:fdrdr"I/T(r)Y/;‘(r’)Yfl(r’)‘Fz(r)
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Cohesive Energy Results

Binding energy of molecules approaches infinite
chain limit

3D matter weakly bound at B~10" G but
increasingly bound for larger fields
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Application: Thermal Emission
from a Condensed Matter Surface

« Some NS spectra best fit

Photons 5~' em™2 kev™'

by blackbody

— e.g., RX J1856.5-3754 : 5
(Burwitz et al. 2003, 0.2 oi::ieroé(k;v;:.'e 0810
Trumper et al. 2004) Spectrum of RX J1856.5-3754 (Burwitz et al. 2003)

— Could be explained by
thermal emission directly
from condensed surface
(van Adelsberg et al. 2005,
Ho et al. 2007)

Emission models for gg?{densed NS surfaces
(van Adelsberg et al. 2005)



Phase Transitions on the

Surface of a NS

« Estimate the phase transition temp.

T

crit

— Various species in chemical equilibrium

— Phase transition occurs when p,~p;

— Assume zero-pressure vapor ,[
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Application: Vacuum Gap Pulsar
Emission Models

NS magnetosphere requires
QB

Pcr—

to screen E||
2TTC

* If p<pg, iIn SOMe region, an

acceleration zone forms there
— Vacuum gap model: p<ps, due to

large cohesive energy (Ruderman- =

Sutherland 1975)

— Space-charge limited flow: due to
inertial effects (Arons-Scharleman
1979, Muslimov-Tsygan 1992)

EHL‘.

NS magnetosphere
(Ruderman-Sutherland 1975)



Electron/lon Thermal Emission

Vacuum gap forms if (Z.)e F<p,c

Energy barrier: E =W, electrons
EB:ES_I_]—ZiW’ lOIlS

Emission rate ‘Foc exp(—E ;/kT)

— Prefactor depends on T (electrons) or the

surface density and Vv, (ions)

We find that kT_ ., ~ 0.03 E;

crit



Vacuum Gap Formation
Conditions

1000 ¢

100 |

B (10'° G)

10-"" :I :I R B




Summary

* In strong magnetic fields (B > 10'* G) H, He,

C, and Fe have large cohesive energies

* Depending on the NS surface temperature, the
cohesive energy can be large enough for

condensed matter surfaces to form

» This has important consequences for “bare
neutron star” and “vacuum gap” emission

models
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Unresolved Issue: High-B Radio
Pulsars vs. Magnetars

» Recent observations found several radio
pulsars with fields comparable to those of
magnetars (e.g., McLaughlin-Kaspi 2003)

— Overlap of magnetars and radio pulsars in the P- p
diagram

* No “pulsar-like” radio emission (but see
Camilo et al. 2006)



Unresolved Issue: High-B Radio
Pulsars vs. Magnetars (continued)

Why 1s there no radio emission from quiescent magnetars?

* One possibility: particle

emission due to twisted Y He
magnetic fields f EQ
overwhelms

acceleration region @ - Gap

* Another possibility: '@ 100
vacuum gap forms form '
high-B pulsars (T < a
few x 10° K), but not )
for magnetars because 10

of the high temperature 0.2 1 5 10
(T >4 x 10°K) T (10°K)




