Equation of state in the inner crust: discussion of the shell effects

Jérôme MARGUERON

"bare" calculations of the EoS

. . .

- Discussion of the shell effects (cluster / continuum)
- Equation of state in the inner crust with partial removal of continuum shell effects

Anatomy of a neutron star

Neutron star at equilibrium : statistical, beta-stability.

> 2.4 10¹⁴ g/cm³ : nuclei dissolve
 → homogeneous nuclear matter

Still some open theoretical questions:

- Deformation of the nuclear cluster
- Is the neutron gas correctly described ?
 - shell effects,
 - band theory.
- How far the nuclear force is reliable ?
 - low densities,
 - large asymmetries
- Description of the pairing at low density
 - uniform matter: strong/weak,
 - non-uniform matter

Self-consistent Hartree-Fock-Bogoliubov mean-field based on a Skyrme interaction

Skyrme interaction : zero range "in medium" nuclear interaction Fitted to reproduce the properties of nuclear matter and tuned on nuclei (here SLy4).

Hartree-Fock-Bogoliubov : mean-field model with treat the pairing correlations acting between all single particle states.

well adapted for non-homogeneous systems.

More details in N. Sandulescu's talk

Difficulties : but only numerical, is to treat large boxes (R>30 fm) -> smooth cut-off of the pairing field @ 20 MeV

Zero range pairing interaction $v(r_1 - r_2) = v_0 [1 - \eta (\frac{\rho}{\rho_0})^{\alpha}] \delta(r_1 - r_2)$

For a sharp cut-off: $v_0 = \frac{\hbar^2}{m} \left(\frac{2\pi^2}{\pi/2a_{nn} - k_c} \right)$ Esbensen, Bertsch, Hencken, PRC 1997

Zero range pairing interaction

force	$V_0 \; [{ m MeV} \; { m fm}^3]$	η	α
SP WP	-648 -648	$0.95 \\ 0.87$	$0.45 \\ 0.20$

for a smooth cut-off of 20 MeV with a tail of 10 MeV

Self-consistent mean-field calculations with pairing (HFB) for Negele-Vautherin cells

From Ch. Monrozeau, PhD thesis 2007 cf. talk of N. Sandulescu

Weak and Strong pairing fields

Binding energy in W-S cell & EoS

$$\frac{E}{V}(\rho, N, Z) = \frac{Zm_p + Nm_n}{V} + \frac{A}{V}B(\rho, R_{box}) + \frac{E(lattice)}{V} + \frac{E(electrons)}{V}$$

$$\frac{E(lattice)}{V} = -0.89593\frac{Z^2e^2}{r_c} \qquad \text{bbc lattice}$$

$$\frac{E(electrons)}{V} = \int dr_1 dr_2 \rho_e(r_1)\frac{e^2}{r_{12}}[\rho_e(r_2) - \rho_p(r_2)]$$
Equation of state
For a given density (ρ):
$$B, \mu_p, \mu_n$$

➤ minimisation of F/V

•
$$\beta$$
-stability: $\mu_p + \mu_e = \mu_n$

 $\mu_{e} = \frac{dE/V}{dN_{e}} = \hbar k_{Fe} + \frac{dE(electrons)/V}{dN_{e}}$

given by HF or HFB and

Mapping of (Z,N) cells @ constant density

- For a given ρ : For all the cells, the step is fixed dR=0.2 fm \rightarrow dV $\rho = \frac{N+Z}{\frac{4}{2}\pi R^3}$ ρ is fixed, then A change by step dA ~ $\rho dV = \rho 4\pi R^2 dR$
 - Define a windows (N,Z) where to scan: 20 < Z < 60 with $dZ=2 \rightarrow dN=dA-dZ$

preliminary results HF: B.E., proton fraction and radius

17914 cells

HF: (Z,N)

HFB: Binding energy (zone 05)

HFB: B.E., proton fraction, radius ^{preliminary} results proton fraction B.E. [MeV] radius [fm] 60 1 1 1 1 1111 1 1 1 1 1 1 1 1 1 NV 1972 BC 1 BC 2 6 BST 2006 0,25 50 0,2 40 fΠ 0,15 30 ര 0,1 20 С 0,05 10 1 1 1 1 1 1 1 1 -2,001 0,001 0,001 0,01 0,01 0.10.10,01 0,1 ρ/ρ_0 ρ/ρ_0 ρ/ρ_0

How solid are the results ?

Are there spurious fluctuations spoiling the research of the minimum energy cell ?

What about unbound neutrons?

Unbound neutrons : the problem of spurious shell effects

Estimation of shell effects for unbound neutrons

Simulate homogeneous pure neutron matter in a cell: Z=0, only N \rightarrow no cluster Set of cells with radius [10:50] fm @ fixed density ρ

Smooth and residual shell effects

Smooth and residual shell effects

Back to inhomogeneous matter

unbound neutrons fills the boundary conditions → induces spurious shell effects in the continuum

"Corrected" binding energy (exact in homogeneous matter) :

 $\boldsymbol{B}(\rho, \boldsymbol{R}_{box}) \approx \boldsymbol{B}_{box-inhom.}(\rho, \boldsymbol{R}_{box}) + \left[\boldsymbol{B}_{hom.}(\rho_{unbound}) - \boldsymbol{B}_{box-hom.}(\rho_{unbound}, \boldsymbol{R}_{box})\right]$

$$B(\rho, R_{box}) \approx B_{box-inhom.}(\rho, R_{box}) + 89.05 \left(\frac{\rho}{\rho_0}\right)^{0.1425} R_{box}^{-2}$$

HF: (Z,N)

Conclusions

- Equation of state obtained is based on an unique nuclear interaction (Skyrme)
- The properties of the inner crust are mainly given by unbound neutrons states and electrons.

then :

- → nuclear clusters induce corrections to homogeneous matter properties
- → It is then important to have the best description of homogeneous neutron gas.
- Spurious shell effects could induce shifts of the energy up to 300 keV (depending of the radius)

We have proposed a method to partly remove spurious shell effects and reduce the fluctuations to about 50 keV.

Outlooks

- Perform the same analysis for system with
 - pairing
 - finite temperature
- The model provides the basic ingredients of macroscopic models ;
- Link between gap in homogeneous matter / non-hom. ;
- Application : cooling process (specific heat). cf N. Sandulecu
- Explore the sensitivity of the macroscopic variables on :
 - Nuclear interaction ;
 - Symmetry energy ;
 - Pairing interaction (SP/WP);