Magnetic Neutron Star Surfaces: Physics and Applications

Dong Lai Cornell University

INT, 6/25/2007

Neutron Star Surface & Crust: Standard Lore & Issues

- Atmosphere/ocean • Outer crust
	- $\Gamma = \frac{(Ze)^2}{r_ikT} > 175$
- Inner crust (above n drip)

Issues:

• Composition: Assume fully catalyzed matter --> Fe, Ni, etc. Can this be realized? "Not clear" in outer layer (Shirakawa '07 PhD Thesis)

 Accretion (inc. surface burning/weak interaction) changes compositon (e.g. Haensel & Zdunik 1990; Schatz et al.1999; Chang et al.2005)

- Assume "Pure" Lattice (one kind of nucleus at a given density) Jones (1999,2004):Thermodynamical fluctuations at freezing leads to impure solid; important for B field dissipation and heat conduction in crust
- Inner Crust: n superfluidity, vortex/lattice pinning/interactions (affect glitches? Precession?), nuclear pasta? etc

Effects of Magnetic Field

- Energy (transverse) energy quantized (Landau levels): $\hbar\omega_c=\hbar\frac{eB}{m_ec}=11.6B_{12}\,\,{\rm keV}$
- Effects of Landau quantization on electron gas:

$$
T_B = \frac{\hbar \omega_c}{k} = 1.34 \times 10^8 B_{12} \text{ K}
$$

$$
E_{\text{Fermi}} = \hbar \omega_c \Longrightarrow \rho_B = 7000 Y_e^{-1} B_{12}^{3/2} \text{ g cm}^{-3}
$$

For $T \lesssim T_B$ and $\rho \lesssim \rho_B$ affects thermodynamical quantities

EOS (pressure, beta-equilibrium etc) Rates (electron capture etc) Electric & thermal conductivities, magnetizations, screening length, etc

Effects of Magnetic Field

- Energy (transverse) energy quantized (Landau levels): $\hbar\omega_c=\hbar\frac{eB}{m_ec}=11.6B_{12}\,\,{\rm keV}$
- Effects of Landau quantization on electron gas:

$$
T_B = \frac{\hbar \omega_c}{k} = 1.34 \times 10^8 B_{12} \text{ K}
$$

$$
E_{\text{Fermi}} = \hbar \omega_c \Longrightarrow \rho_B = 7000 Y_e^{-1} B_{12}^{3/2} \text{ g cm}^{-3}
$$

For $T \lesssim T_B$ and $\rho \lesssim \rho_B$ affects thermodynamical quantities

EOS (pressure, beta-equilibrium etc) Rates (electron capture etc) Electric & thermal conductivities, magnetizations, screening length, etc

FIG. 1.--P vs. ρ for the cold homogeneous npe equilibrium system in a uniform magnetic field. Different curves represent different field strengths: $B = 0$ (solid), $B = 0.1B_c$ (dot), $B = B_c$ (short dash), $B = 10B_c$ (long dash), $B =$ 100B, (dot-dash). The filled circles (triangles) indicate the densities at which electrons just begin to fill the first (second) Landau level for the four $B \neq 0$ cases.

de Haas-van Alphen oscillations

Potekhin 1999

Magnetic fields affect the transport properties (even for nonquantizing fields, $\rho \gtrsim \rho_B$ **)**

gyrofrequency $\omega_c^* = \frac{eB}{m_e^*c} \gg$ elecron collision frequency τ_0^{-1}
transverse conductivity suppressed by a factor of $(\omega_c^*\tau_0)^{-2}$

Affect thermal structure of NS envelope and cooling

(e.g. Hernquist, van Riper, Page, Heyl & Hernquist, Potekhin &Yakovlev etc.)

Nonuniform surface T due to anisotropic heat transport

- Region where B perpendicular to r: heat flux is reduced
- Region where B parallel to r: heat flux remains or increases (due to quantization)

Potekhin & Yakovlev 2001

Effect on (Passive) Cooling

Outermost layers

- Important because:
	- --mediates emergent radiation from surface to observer
	- --boundary condition for magnetosphere model
- Composition unknown a priori
	- --hint from observations?
- Depending on B, T and composition, may be
	- --gaseous and nondegenerate, nonideal, partially ionized atmospheres:
		- e's, ions, atoms, molecules (small chains)
	- --condensed state (zero-pressure solid)

Bound states (atoms, molecules, condensed matter) in Strong Magnetic Fields:

Critical Field:

$$
\hbar\omega_{ce}=\hbar\frac{eB}{m_ec}=\frac{e^2}{a_0}\quad\Longrightarrow\quad B=B_0=2.35\times10^9\,\,{\rm G}
$$

Strong field: $B \gg B_0$ Property of matter is very different from zero-field

Atoms and Molecules

Strong B field significantly increases the binding energy of atoms

For
$$
b = \frac{B}{B_0} \gg 1
$$
, $B_0 = 2.35 \times 10^9$ G
\n
$$
|E| \propto (\ln b)^2
$$
\nE.g. $|E| = 160$ eV at 10^{12} G
\n
$$
|E| = 540
$$
 eV at 10^{14} G

Atoms combine to form molecular chains: E.g. $H_2, H_3, H_4, ...$

Condensed Matter

Chain-chain interactions lead to formation of 3D condensed matter

Binding energy per cell $|E| \propto Z^{9/5} B^{2/5}$ Zero-pressure density
 $\simeq 10^3 A Z^{3/5} B_{12}^{6/5}$ g cm⁻³

Cohesive energy of condensed matter

• Strong B field increases the binding energy of atoms and condensed matter

Energy of atom: \sim (ln b)²

Energy of zero-pressure solid: $\sim b^{0.4}$

==> Expect condensed surface to have large cohesive energy

• Calculations in 1980s (Jones, Neuhauser et al.) showed that C, Fe solids are unbound (or weakly bound) at 1012G; some conflicting results.

New calculations (Zach Medin & DL 2006a,b)

- Density functional theory
- Accurate exchange-correlation energy
- Improved treatment of band structure
- Extend to $\sim 10^{15}$ G

Fe solid

Medin & DL 06

Implications...

Thermally Emitting Isolated NSs

"Perfect" X-ray blackbody:

RX J1856.5-3754

Emission from condensed surface (rather than atmosphere)?

Saturated Vapor of Condensed NS Surface

For high B/low T, NS surface in condensed form (with little vapor above)

Emission from condensed NS surface:

Reflectivity R_E Emission I_E=(1-R_E)B_E(T)

van Adelsberg, Lai, Potekhin & Arras 05

Figure 3. Spectra of hydrogen atmospheres with $B = 4 \times 10^{12}$ G and $T^{\infty} = 4.3 \times 10^{5}$ K. The dotted and long-dashed lines are the model spectra using the "thick" atmosphere and "thin" atmosphere with $y_{\text{H}} = 1.2 \text{ g cm}^{-2}$, respectively (see text for details). The short-dashed line is for a blackbody with the same temperature. All spectra are redshifted by $z_g = 0.22$. The vertical line separates the wavelength ranges where the atmosphere is optically thin $(\tau_{\lambda} < 1)$ and optically thick $(\tau_{\lambda} > 1)$.

Figure 8. Spectrum of RX J1856.5-3754 from optical to Xray wavelengths. The data points are observations taken from various sources. Error bars are one-sigma uncertainties. Optical spectra are binned for clarity: STIS data into 30 bins at a resolution of 12 Å and VLT data into 60 bins at 55 Å resolution. The solid line is the absorbed (and redshifted by $z_g = 0.22$) atmosphere model spectrum with $B = 4 \times 10^{12}$ G, $y_H = 1.2$ g cm⁻², $T^{\infty} = 4.3 \times 10^{5}$ K, and $R^{\infty} = 17$ km. The dashed line is the unabsorbed atmosphere model spectrum. The dash-dotted line is the (absorbed) blackbody fit to the X-ray spectrum with $R^{\infty} = 5$ km.

Ho et al 2007

Polar Gap Accelerator of Radio Pulsars

(Ruderman & Sutherland 1975; ……)

Variant Model: Space-charge limited flow

(Arons & Scharleman 79; Muslimov & Tsygan 90; Harding & Muslimov 98; Qiao, Zhang et al ..…)

- Does not require cohesive surface
- Not as efficient an accelerator (require GR, may require special field geometry)

Existence of polar (vacuum) gap requires: surface does not efficiently supply charges to magnetospheres

Ion emission from condensed surface:

Energy barrier $E_B = E_{coh} + I - ZW$ Emission rate $\propto \exp(-E_B/kT)$

Medin & DL 2007

Observationally, High-B radio pulsars T<1-2MK, magnetars T>5 MK (Kaspi & McLaughlin 05)

Speculation:

Pulsar activity depends on T (in addition to P and B)?

Pulsar death line (vacuum gap cascade)

Medin & Lai 07 (in prep)

Modeling of Magnetic NS Atmospheres

Relevant to thermal emission of NSs

NS Atmospheres:

- Outermost \sim cm of the star
- Density 0.1 -10³ g/cm³: nonideal, partially ionized, magnetic plasma
- **Effect of QED: Vacuum polarization**
- **Partially ionized atmosphere models**

Vacuum Polarization in Strong B

Two photon modes:

Ordinary mode (//) Extraordinary mode (L)

Magnetic Plasma by itself (without QED) is birefringent:

Ordinary mode

Extraordinary mode

"Plasma+Vacuum" ==> Vacuum resonance

e.g. Meszaros & Ventura 79; Pavlov & Shibanov 79; DL & Ho 02

Why do we care?

The two photon modes have very different opacities

- => Mode conversion can affect radiative transfer significantly
- => Spectrum and polarization signal from the NS

A technical point:

Mode conversion is a coherent phenomenon.

Need to go beyond the usual modal description of radiative transport:

=> Take into account of the nontrivial conversion probability

=> Solve transfer equations for Stokes parameters (I,Q,U,V)

Matt Van Adelsberg & DL 2006

==> Magnetars do not show absorption features in thermal emission (In qualitative agreement with approximate calculations by Wynn Ho $&$ DL 03)

For $B \le 7 \times 10^{13}$ G, vacuum polarization has small effect on spectrum

Matt Van Adelsberg & DL 2006

==> Absorption features observed in thermally emitting isolated NSs

Even for modest B's, vacuum resonance produces unique polarization signals

"boring" spectrum & lightcurve, but interesting/nontrivial polarization spectrum!

==> X-ray polarimeters

X-ray Polarimetry: Measurement Concept

Initial photo-electron direction has memory ($\cos^2\theta$) of incident polarization Initial demonstration at INFN (Italy) Costa et al., Nature, 411, 662, (2001)

Individual photo-electron tracks are measured with a fine-spaced pixel proportional counter. The track crosses multiple pixels.

Gas filled counter can be tuned to balance length of photoelectron track and quantum efficiency

J. Swank & T. Kallman (GSFC)

Partially Ionized magnetic H atmosphere models with thermodynamically consistent EOS & opacities

Potekhin et al. 2004

Partially ionized C,O magnetic atmospheres

Mori & Ho 2007

Summary

- The study of NS surface/envelope is important for understanding NS interiors ("Physics at extreme density")
- It is also important in its own right ("Physics at extreme B field"); constrain surface B etc.
- **NS crusts:** largely understood?? But
	- Impurities/defects?
	- Inner crusts: vortex/lattice coupling, nuclear pastas, …
	- Crust on top of quark star?
- Outermost layers:
	- Important for thermal emission and for magnetosphere physics
- **Matter in Strong B-Fields:**
	- Larger binding energies, molecular chains and condensed matter,
		- dense plasma, phase transition …
	- Condensation of magnetic NS surface.

• **Radiative Transfer in Strong B-Fields:**

- Vacuum polarization significantly affects radiative transfer
	- For B>10¹⁴G, modify spectrum: soften hard tail; suppress spectral lines
	- For B<10¹⁴G, negligible effect on spectrum (spectral lines possible, observed!) but dramatically affect X-ray polarization (unique signature of vacuum polarization, measurable with future X-ray polarimeters)

Partially ionized magnetic atmosphere models.

Landau Level Basics:

.
T . **Degeneracy of Landau Level: For b>>1, electrons settle in ground Landau level n=0**

Label the states with R_m Number of states in area A is \approx *A* πR_0^2

 $R_m = (2m + 1)^{1/2} R_0, \quad m = 0, 1, 2, \cdots$

$$
R_0 \to R_m = (2m+1)^{1/2} R_0 \qquad m = 0,1,2,...
$$

$$
\Rightarrow E_m \approx -0.16 \left(\ln \frac{b}{2m+1} \right)^{1/2} (a.u.)
$$

Closely packed levels around ground state

(2) Weakly bound: $v>0$

Heavy Atoms

Filling in (m,\$**) orbitals**

Calculations:

Hartree-Fock Density functional theory

Unsolved Problem: Effect of Finite Ion Mass

- **Coupling between internal structure and CM motion**
- • **Even for stationary atom: H** atom: $+$ **m** $E_{cp} = 630$ **m** $B_{14} eV$
- **Not solved for Z>1 atoms**

H₂ Molecule

Bonding mechanism very different from B=0 case

E.g. Dissociation energy: 40 eV at 1012G 350 eV at 1014G

Calculations: Hartree-Fock (with multi-configurations); Density-functional

Molecules of Heavy Elements

 $Fe₂$ **and** $Fe₃$ **are** bound (relative to Fe) only for B>10¹⁴ G (Z. Medin)

Condensed Matter

As n increases, $|E_n|/n$ of H_n saturates \implies **1D chain**

Placing parallel chains together (in body-centered tetragonal lattice)

3D condensed matter

Basic scaling: Consider uniform electron gas in a lattice of ions (Z,A) Energy per Wigner-Seitz cell (of radius R) is

$$
E \sim Z^3/(b^2 R^6) - Z^2/R
$$

Minimizing E with respect to R \Box

Binding Energy per cell $|E| \sim Z^{9/5}$ b ^{2/5} Radius of cell $R \sim Z^{1/5} b^{-2/5}$. P

Zero-pressure density $\approx 10^3$ AZ ^{3/5} B₁₂^{6/5} g cm⁻³

Quantitative Calculations of 1D Chain: Band structure, density functional theory

For H: 1D chain is bound relative to H atom for $B > 10^{11}$ G (How about Peierls instability? Dimer state?)

For heavy elements: require higher B

Density functional calculation of 1D condensed matter

Unsolved Problem: Electron-Ion emission of condensed matter

Important for: charge supply to magnetosphere; polar gap accelerator …

- Electron emission (thermionic emission): depends on W
- Ion emission (evaporation):

Energy barrier $E_B = E_{coh} + I - Z W$ Emission rate per surface "atom" $\sim \omega_{\text{vib}} \exp(-E_B/kT)$? ω_{vib} =? Debye frequency (~ ion plasma freq) ion cyclotron frequency

Figure 4. Total cross section σ_+ versus photon energy for helium photoionization, from initial states $(m_1, m_2) = (1, 0)$ (solid lines) and $(2,0)$ (dashed lines). The field strength is 10^{12} G. The dotted lines extending from each cross section curve represent the effect of magnetic broadening on these cross sections, as approximated in Eq. (54), for $T = 10^6$ K.

Medin, DL & Potekhin 2007