Nearby, Thermally Emitting Neutron Stars:

Laboratories for Extreme Physics

David L Kaplan MIT Kavli Institute for Astrophysics and Space Research

Collaborators: M. van Kerkwijk, K. Mori (Toronto), J. Anderson (Rice), W. Ho (CfA), G. Pavlov (Penn State)

> UW INT June 25, 2007

• Exploit neutron stars to learn about matter

- Exploit neutron stars to learn about matter
- Physics goals:
 - cooling
 - extreme densities
 - extreme magnetic fields

- Exploit neutron stars to learn about matter
- Physics goals:
 - cooling
 - extreme densities
 - extreme magnetic fields
- What **observations** do we need?

Equation of State: Radius & Mass

Equation of State: Radius & Mass

- Models incorporate interior physics
- Include effects of:
 - Magnetic field
 - Elemental abundances
- mass can change cooling

Age

Other Methods for EOS

- Fastest spin of millisecond pulsars (Chakrabarty): best limit does not constrain EOS (but see Kaaret et al. '06)
- Binary mass measurements (Thorsett & Chakrabarty): new measurements (Ransom; Nice) may be important
- Quiescent X-ray Binaries (Rutledge; Heinke): known distances, but *faint* & unknown physics
- Gravitational redshift (Cottam): one source, one observation (also see Özel '06)
- Moment of inertia of double pulsar (Kramer): may be possible in 5-10 years

Types of Cooling Isolated NSs

- Young (<10⁴ yrs) in supernova remnants
 - active (radio) pulsars (Crab, Vela, 3C 58)
 - radio-quiet Central Compact Objects (Cas A, Puppis A)
- Middle-aged (<10⁶ yrs)
 - active (radio) pulsars (Geminga, PSR B0656+14)
 - radio-quiet isolated neutron stars

Types of Cooling Isolated NSs

- Young (<10⁴ yrs) in supernova remnants
 - active (radio) pulsars (Crab, Vela, 3C 58)
 - radio-quiet Central Compact Objects (Cas A, Puppis A)
- Middle-aged (<10⁶ yrs)
 - active (radio) pulsars (Geminga, PSR B0656+14)

radio-quiet isolated neutron stars

R Cr A Star-Forming Region RX J1856.5-3754

- Bright, cool X-ray sources w/ very faint optical counterparts
- Currently 7 with no extra complications
- Properties:
 - temperatures ~ I million degrees
 - spin periods > 3 sec.
 - nearby, < I kpc</p>

- Bright, cool X-ray sources w/ very faint optical counterparts
- Currently 7 with no extra complications
- Properties:
 - temperatures ~ I million degrees
 - spin periods > 3 sec.
 - nearby, < I kpc</p>
- Why this sample?
 - Nearby \rightarrow bright
 - Relatively young \rightarrow can use for cooling curves
 - Emission is thermal \rightarrow comes only from surface

Optical Counterparts

Optical Counterparts

Optical Counterparts

What Do We Need to Know?

What Do We Need to Know?

- For radius:
 - distance: angular size \rightarrow true size
 - understanding of surface (abundances, T & B distributions): received flux→true flux

What Do We Need to Know?

• For radius:

- distance: angular size→true size
- understanding of surface (abundances, T & B distributions): received flux→true flux
- For cooling:
 - age
 - distance: flux \rightarrow observed luminosity
 - understanding of surface: observed luminosity → total luminosity

Proper Motions: Measuring Ages

Proper Motions: Measuring Ages

Parallaxes: Measuring Distances

Parallaxes: Measuring Distances

Parallaxes: Measuring Distances

Can We Do This? RX J1856:

Walter (2001) Kaplan et al. (2002) Walter & Lattimer (2002) MHvK, DLK, & JA (about to be submitted)

Can We Do This? RX J1856:

Walter (2001) Kaplan et al. (2002) Walter & Lattimer (2002) MHvK, DLK, & JA (about to be submitted)

Can We Do This? RX J1856:

Another Case: RX J0720

Another Case: RX J0720

Kaplan et al. 2007 also see Motch et al. 2005 for another object

Another Case: RX J0720

X-ray Timing: Magnetic Fields

Rotating dipoles lose energy, so they slow down

X-ray Timing: Magnetic Fields

Rotating dipoles lose energy, so they slow down

If we can measure the slow-down, we can measure the magnetic field

X-ray Timing: Magnetic Fields

Is Emission Thermal?

- Compare:
 - X-ray luminosity L_X
 - Spin-down luminosity $\dot{E}=d/dt(\frac{1}{2}I\Omega^2)$
- Radio pulsars:

Lx«E

- INS
 - $L_X/\dot{E} \sim (10^{32}/4e30) \sim 40$
- Significant nonthermal emission, driven by É
 - Little (if any) nonthermal emission

Is Emission Thermal?

- Compare:
 - X-ray luminosity L_X
 - Spin-down luminosity E=d/a
- Radio pulsars:
 - L_X≪Ė

- INS
 - L_X/Ė ~ (10³²/4e30)~40

Image:

van Kerkwijk &

Kulkarni 2001

- Significant nonthermal emission, driven by É
 - Little (if any) nonthermal emission

But: bowshock implies higher É (~10³² erg/s) for this source (RX J1856), although P is similar

 Predicted: ROSAT would see ~1000 accreting NSs (e.g., Treves & Colpi 1991)

- Predicted: ROSAT would see ~1000 accreting NSs (e.g., Treves & Colpi 1991)
- Found: 0 (indicated by P, v)

- Predicted: ROSAT would see ~1000 accreting NSs (e.g., Treves & Colpi 1991)
- Found: 0 (indicated by P, v)
- Why?
 - Velocity too high for accretion (~200 km/s)
 - Magnetic field inhibits M too
 - See Perna et al. (2003)

Not Magnetars (?)

- X-ray emission we see is from cooling
- Could "normal" cooling be augmented by B decay?
 - i.e., is energy in *B* relevant?

Not Magnetars (?)

- X-ray emission we see is from cooling
- Could "normal" cooling be augmented by B decay?
 i.e., is energy in B relevant?
- Answer: probably not (Zane et al. '02; Kaplan et al. '02)
 - Based on simple models of field decay (Heyl & Kulkarni '98)
 - Would need B(now)>2¹⁴ G to have decayed significantly in past
 - Compare to 2¹³ G from spin-down
 - Caveat: field decay is complicated

Spectroscopy: Measuring Surfaces

Spectroscopy: Measuring Surfaces

Spectroscopy: Measuring Surfaces

(Drake et al. '02; Pons et al. '02; Burwitz et al. '03)

Complications

- Magnetic field is high: standard atmosphere models not valid
- X-ray blackbody does not match O/UV
- For most sources, I or 2 blackbodies do not fit
- We see pulsations: surface not uniform
- Variability!

Effects of B on Hydrogen Atoms

a more realistic model

- Thin (~I g/cm²) layer of partially ionized H
- On top of condensed surface
- Even w/ dipole B (& T), does not predict strong pulsations (see Ho 2007; Tiengo & Mereghetti '06)

(Ho et al. 2007; also see Motch et al. '03, Zane et al. '04)

a more realistic model

- Thin (~I g/cm²) layer
 of partially ionized H
- On top of condensed surface
- Even w/ dipole B (& T), does not predict strong pulsations (see Ho 2007;Tiengo & Mereghetti '06)

(Ho et al. 2007; also see Motch et al. '03, Zane et al. '04)

Spectra: Source Comparison

Spectra: Source Comparison

Spectral Absorption Features

Haberl et al. (2003, 2004) van Kerkwijk et al. (2004) Zane et al. (2005)

Spectral Absorption Features

- Cyclotron (proton)
- Neutral hydrogen
- Molecular H
- He (neutral, ionized, molecular,...)
- Other species

Need to consider vacuum resonance suppression

RX J0720:Variability

 Spectrum changed over ~months

de Vries et al. (2004);Vink et al. (2004)

de Vries et al. (2004);Vink et al. (2004)

RX J0720:Variability

- Spectrum changed over ~months
- Same with pulse profile

de Vries et al. (2004);Vink et al. (2004)

RX J0720:Variability

- Spectrum changed over ~months
- Same with pulse profile
- Causes:
 - Intrinsic change in surface?
 - or change in angle: i.e.
 free precession
 (Haberl et al. 2006)

RX J0720: Variability

- Spectrum changed over ~months
- Same with pulse profile
- Causes:
 - Intrinsic change in surface?
 - or change in angle: i.e. free precession (Haberl et al. 2006)

de Vries et

- Change in surface composition?
- Still working on nature of change:
 - Glitch related to coupling of superfluid core to crust via B?
 - Change in B topology?
 - Accretion of debris/ dust?

Conclusions

- Too early to get real physics out
- Bring together:
 - Timing
 - X-ray spectroscopy
 - Optical photometry
 - Astrometry
- But are learning:
 - Atmospheres
 - NS population: how do these objects fit?
- Comparisons are vital

Conclusions

- Too early to get real physics out
- Bring together:
 - Timing
 - X-ray spectroscopy
 - Optical photometry
 - Astrometry
- But are learning:
 - Atmospheres
 - NS population: how do these objects fit?
- Comparisons are vital

Future Efforts

- Astrometry \rightarrow distance(s) and ages
- X-ray timing \rightarrow magnetic fields
 - Working on timing noise
- X-ray spectra \rightarrow try to understand surface
 - Phase resolved? Multiple absorption lines?
- Optical/UV spectra \rightarrow characterize emission
 - Non-thermal emission?
- Find more source → improve statistics (see recent results by Rutledge et al.)