The Neutron Star Crust and Surface June 28, 2007

CONSTRAINTS ON DENSE MATTER FROM X-RAY OBSERVATIONS OF NEUTRON STARS

> Craig Heinke Northwestern University with G. Rybicki, J. Grindlay, R. Narayan, R. Wijnands, P. Jonker, R. Taam, C. Deloye

X-RAY BINARIES

- Neutron star (NS) accretes mass from companion
- Incoming matter produces accretion disk
- Roughly 100 NSs accreting at high rates in Galaxy

Low-mass X-ray binary (LMXB)

X-RAY BINARY TRANSIENTS

- Brief outbursts, most of disk falls onto neutron star
- Disk builds up during long quiescent periods
- Quiescent X-ray flux 10³-10⁵ times fainter than outburst; little or no accretion

QUIESCENCE

- X-ray spectrum shows: blackbodylike emission from surface; high-energy emission (nature unknown); photoelectric absorption at low energy
- Blackbody-like emission modeled as radiation of whole surface through hydrogen atmosphere

quiescence, Rutledge 01

H-ATMOSPHERE MODELS

- Assume pure ionized H, B<10⁹ G: adequate for kT~100 eV quiescent NS. Atmosphere fractionates within seconds.
- Models computed by Zavlin & Pavlov, Rybicki in very close agreement. Well-understood case.
- Possible uncertainties:
 - Low-level accretion (alter opacity with traces C,O,N; e.g. Rutledge 02a)
 - White dwarf companion-> He atmosphere
 - Temperature inhomogeneities?

A: RADIUS CONSTRAINTS

- Can constrain radius of blackbody if know flux, temperature, distance (Brown 98)
- Flux= $\sigma(R/D)^2 T_{eff}^4$
- Must correct for redshift of light from neutron star surface, giving constraint on mass and radius. Surface gravity effects on spectrum mean confidence contours don't perfectly track R_∞.
- Distance rarely known accurately in galaxy, except in globular clusters--Rutledge 02b for ω Cen.

GLOBULAR CLUSTERS

- Dense clusters of 10⁴⁻⁷ stars of same age, composition
- Distance can be well constrained (currently to ~10%)
- Extremely dense core, leading to stellar interactions
- Stellar collisions or exchanges, putting many neutron stars into close binaries

HST image of 47 Tuc

R. Gilliland, Hubble on 47 Tuc

47 TUCANAE

- Chandra X-ray studies find dozens of X-ray binaries in quiescence, 5 in this deep image of 47 Tuc
- Brightest (X7) shows blackbody-like spectrum without second component
- Second brightest also blackbody-like spectrum, eclipses at 8.7 hours, binary optical counterpart detected

Chandra on 47 Tuc, Heinke 05

X7 SPECTRUM

- Excellent fit to H-atmosphere
- No evidence for lines, edges
- No variability (hours to decades), no evidence for accretion
- Temp. inhomogeneities testable with long Chandra HRC dataset
- Perfect test object!!

Chandra X-ray spectrum, Heinke 06

X7 MASS, RADIUS

- Spectral fit to X7 places constraints on M, radius
- Indicates moderately large radius, excluding several NS structures
- XMM measurements of other NSs find slightly smaller radii (Gendre 03)

90%, 2**σ**, 3**σ** contours; Heinke 06

B: COOLING OF NEUTRON STARS

- During accretion, outer crust heated, quickly radiates heat (see Ed Cackett's talk).
- Deep crust under pressure fuses nuclei, heats core (Brown 98).
- Heat from core emitted from surface in quiescence, on timescale of 10⁴ years, at rate ~1/130 of time-averaged flux from accretion under minimal cooling (see K. Levenfish's talk for details).
- Well-studied transient LMXBs provide constraints on cooling rate, neutrino emission, NS interior structure.

COOLING NEUTRON STARS

- "Standard" neutrino cooling in lowmass neutron stars through neutronneutron bremsstrahlung
- Higher mass neutron stars can reach higher neutrino emissivity
- E.g., direct URCA process: $n \rightarrow p+e+v$, p+e $\rightarrow n+v$, if protons >10%
- Proton superconductivity prevents direct URCA processes, decays with increasing density, allowing range of cooling rates for range of NS masses

COOLING THRU EXOTICA

- Compare young cooling NSs with cooling predictions
- Hottest NS agree with standard cooling
- Coolest NSs consistent with any enhanced cooling mechanism

Yakovlev & Pethick 2004

SAX J1808.4-3658

- Equivalent measurement for transient LMXBs, IF mass transfer rate and quiescent temperature measured.
- NSs in X-ray binaries can accrete substantial mass. Greater range in masses, greater range in cooling rates?
- SAX J1808.4-3658: Regular outbursts (every ~2 years), known distance (3.4-3.6 kpc; Galloway 06) -> known mass transfer rate
- Perfect agreement with predictions of mass transfer rate from gravitational radiation.
- Allows accurate quiescent flux prediction!

SAX J1808.4-3658

- X-ray spectrum well-fit with power-law, with no blackbody component
- Constrains neutron star temperature $< 34 \mbox{ eV}$ ($<\!4^*10^5 \mbox{ K}$), $L_{bol,NS} < 10^{31} \mbox{ erg/s}$
- Most restrictive constraint on neutron star cooling New 2007 observation: kT < 30 eV, $L_{bol,NS} < 5*10^{30} \text{ erg/s}$

X-ray spectra and residuals, Heinke et al. 2007

COOLING CONSTRAINTS

- SAX J1808-36 cools quickly, likely has large mass
- 1H 1905+000 (Jonker 07) also cold (kT<39 eV, L_{bol,NS}<10³¹ erg/s)
- Suggests direct URCA, by nucleons or hyperons; may reject minimal cooling

CONCLUSIONS

- X-ray observations of LMXBs in quiescence provide constraints on behavior of dense matter
- Radius measurements of NS in 47 Tuc suggests moderately large radius or high mass
- SAX J1808.4-3658 and 1H 1905+000 require very fast cooling, disagree with minimal cooling

FUTURE OBSERVATIONS

- More globular cluster quiescent LMXBs available: Webb re-analysis of XMM observations in revision, deep NGC 6397 Chandra observations occurring this week. Constellation-X will give spectacular results!
- Many more transient NSs available for study; distance measurements crucial (need Type 1 bursts--RXTE critical!)
- Would LOVE to have a cooling rate measurement AND a mass for several (even one) NSs!

FOR BOB

- To tell physicists (and other astronomers):
- Zero-B hydrogen-atmosphere models are trustworthy!
- M,R constraints from NSs in globular clusters are **sound**, beginning to reach interesting constraints.
- Cooling constraints from some transient LMXBs are strictest test of core cooling, and **disallow minimal cooling**.

FOR BOB

• To ask nuclear theorists:

- What range of nuclear EOSs are considered reasonable? For a measured NS mass and radius, what is really ruled out?
- What are the real ranges of cooling rates for different NS interior properties; i.e. can pion condensates explain the coldest NSs?

EQUATIONS OF STATE

- Proton-rich nucleus gives large maximum mass, radius (MS0)
- Kaons, pions etc. can reduce P, give small radius (GS1, PAL6)
- Shaded regions excluded
- Constraining mass and radius important

Lattimer & Prakash 2004

TRANSIENT LMXB OBSERVATIONS

Source	N_H (10 ²² cm ⁻²)	kT (eV)	D (kpc)	Outbursts	Years	\dot{M} $(M_{\odot} \text{ yr}^{-1})$	L_{NS} (erg s ⁻¹)	Refs
Aql X-1	4.2×10^{21}	~ 94	5	8	10.7	4×10^{-10}	$5.3 imes10^{33}$	1,2,3,4
Cen X-4	5.5×10^{20}	76	1.2	-	-	$< 3.3 \times 10^{-11}$	4.8×10^{32}	5,3
4U1608 - 522	8×10^{21}	170	3.6	4	10.7	3.6×10^{-10}	5.3×10^{33}	6, 3, 4
KS 1731–260	$1.3 imes 10^{22}$	70	7	1	30	$< 1.5 \times 10^{-9}$	$5 imes 10^{32}$	7,4
MXB 1659–29	2.0×10^{21}	55	$\sim 10?$	2	10.7	1.7×10^{-10}	2.0×10^{32}	7,4
EXO 1747-214	4×10^{21}	< 63	< 11	-	-	$< 3 imes 10^{-11}$	$< 7 \times 10^{31}$	8
Terzan 5	1.2×10^{22}	< 131	8.7	2	10.7	3×10^{-10}	$< 2.1 \times 10^{33}$	9,10,4
NGC 6440	7×10^{21}	87	8.5	3	35	$1.8 imes 10^{-10}$	$3.4 imes 10^{32}$	11,4
Terzan 1	1.4×10^{22}	74	5.2	-	_	$<1.5\times10^{-10}$	$< 1.1 \times 10^{33}$	12
XTE2123-058	6×10^{20}	< 66	8.5	1	10.7	$<2.3\times10^{-11}$	$< 1.4 \times 10^{32}$	3,4
SAXJ1810.8-2609	$3.3 imes 10^{21}$	< 72	4.9	1	10.7	$<1.5\times10^{-11}$	$<2.0\times10^{32}$	13, 3, 4
RXJ1709-2639	$4.4 imes 10^{21}$	122	8.8	2	10.7	1.8×10^{-10}	2.2×10^{33}	$14,\!15,\!4$
1H1905+000	$1.9 imes 10^{21}$	< 50	10	-	-	$<1.1\times10^{-10}$	$< 4.8 \times 10^{31}$	16, 15
SAXJ1808.4-3658	$1.3 imes 10^{21}$	< 34	3.5	5	10.7	1.0×10^{-11}	$< 1.1 \times 10^{31}$	$17,\!4,\!15$

Table 2. Luminosities and Mass Transfer Rates

Note. — Estimates of quiescent thermal luminosities from neutron star transients, and mass transfer rates (inferred from RXTE ASM observations for systems with RXTE-era outbursts). Quiescent thermal luminosities are computed for the unabsorbed NS component in the 0.01-10 keV range. Outbursts and years columns give