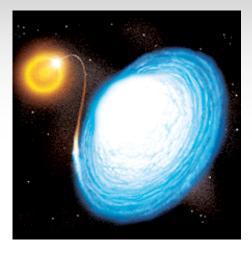
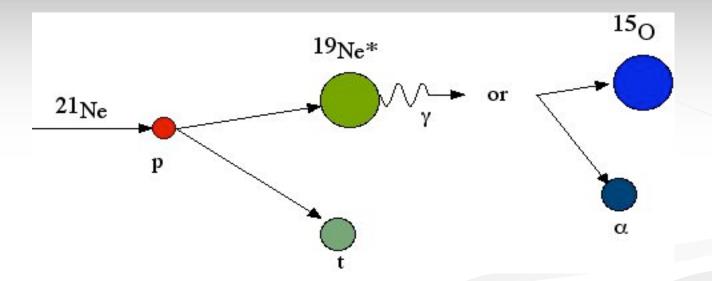
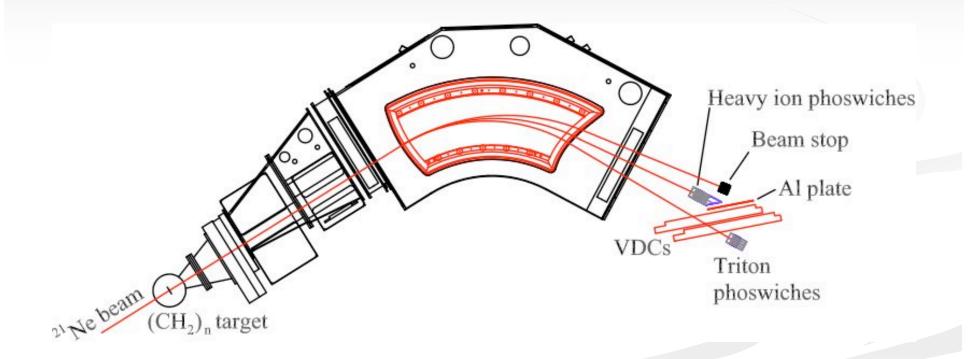

Experimental Efforts to Determine the ¹⁵O(α,γ)¹⁹Ne Reaction Rate


Barry Davids, TRIUMF INT, 12 July 2007

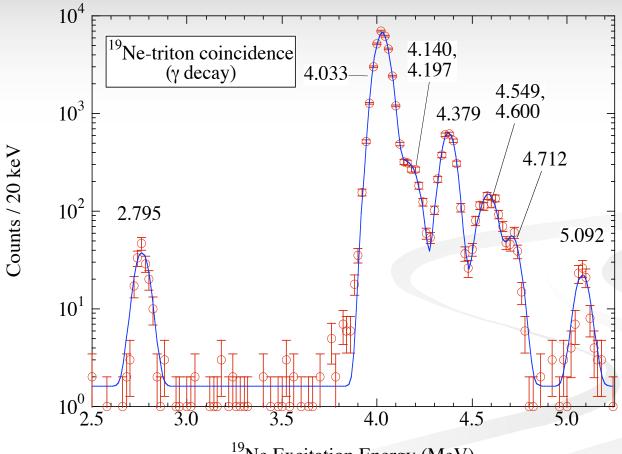
Type I X-Ray Bursts: Dependence on ${}^{15}O(\alpha,\gamma){}^{19}Ne$


Fisker et al., ApJ 650, 332 (2006): reaction rate must be above certain value or accreted matter burns stably without bursting

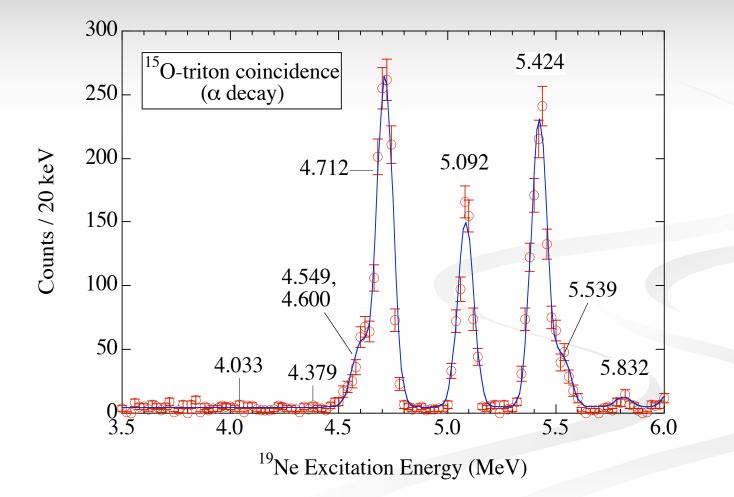
$^{15}O + \alpha \rightarrow ^{19}Ne + \gamma$

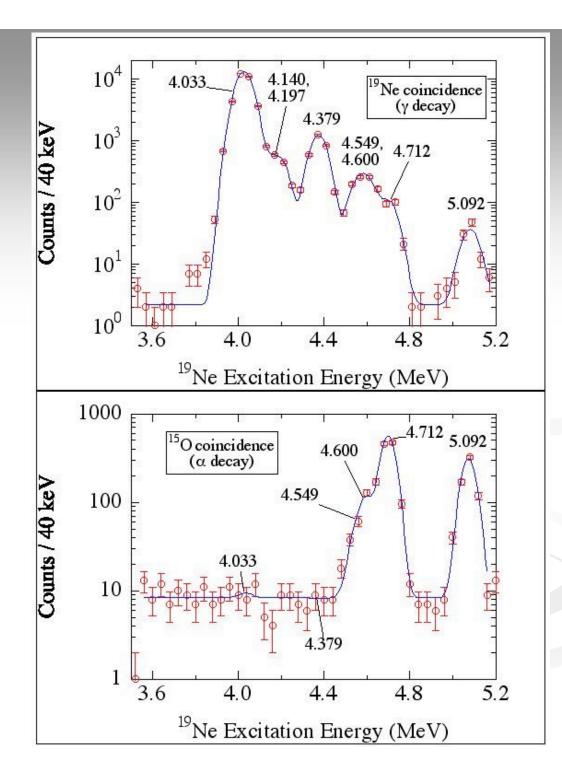

- No direct measurement is presently feasible (¹⁵O is radioactive)
- Reaction proceeds resonantly at temperatures characteristic of x-ray bursts
- For narrow, isolated resonances, contributions add incoherently
- Contribution of each resonance to reaction rate proportional to its strength $\omega\gamma$
- Resonance strength $\omega \gamma \propto \Gamma_{\alpha} \Gamma_{\gamma} / \Gamma$
- $\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma = B_{\alpha} (1 B_{\alpha}) \hbar / \tau$, where B_{α} is the alpha-decay branching ratio and τ the mean lifetime of the state

Experimental Technique: B_{α}


- Decay properties of excited states in ¹⁹Ne determine reaction rate
- Populate states via transfer reaction, study decays
- States of interest decay exclusively by α or γ emission
- Populate states, count relative numbers of $\alpha \& \gamma$ decays to obtain B_{α}
- Used ²¹Ne + p \rightarrow ¹⁹Ne + t reaction at KVI, Groningen, Netherlands

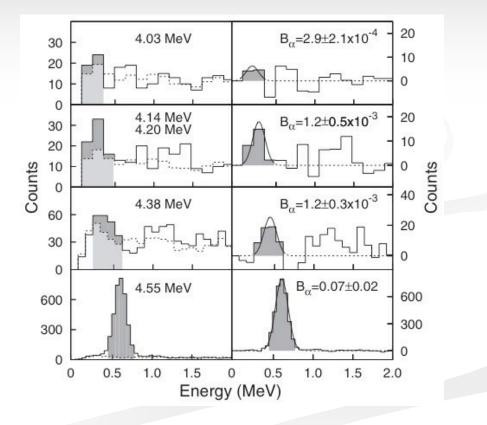
Experimental Setup at KVI's Big-Bite Spectrometer


Triton determines ¹⁹Ne excitation energy Heavy ion in coincidence reveals decay mode


Gamma Decay

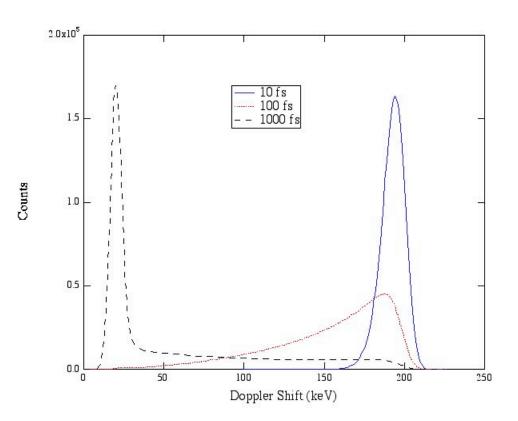
¹⁹Ne Excitation Energy (MeV)

Alpha Decay

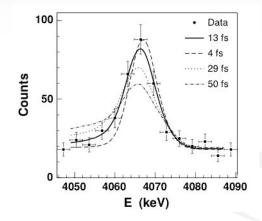

Branching Ratios

Excitation Energy (MeV)	Spin & Parity	B _α (this work)	Β _α (Magnus <i>et al</i> .)	Β _α (Laird <i>et al</i> .)
4.033	3/2+	< 4.3 × 10 ⁻⁴		
4.379	7/2+	< 3.9 × 10 ⁻³	0.044 ± 0.032	
4.549	(3/2)-	0.16 ± 0.04	0.07 ± 0.03	
4.600	(5/2+)	0.32 ± 0.04	0.25 ± 0.04	0.32 ± 0.03
4.712	(5/2-)	0.85 ± 0.04	0.82 ± 0.15	
5.092	5/2+	0.90 ± 0.06	0.90 ± 0.09	

Davids et al., Phys Rev C 67, 065808 (2003)

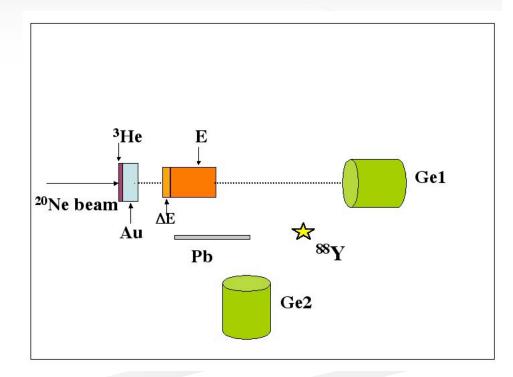

Notre Dame B_{α} Measurement?

- Recent PRL from Tan et al. claims to detect α decay from states below E_x = 4.5 MeV
- Data do not warrant claim
- Background poorly understood and modeled
- Statistical analysis flawed
- Reported branching ratios of 4.03, 4.14/4.20, and 4.38 MeV states are unreliable
- KVI data have highest sensitivity

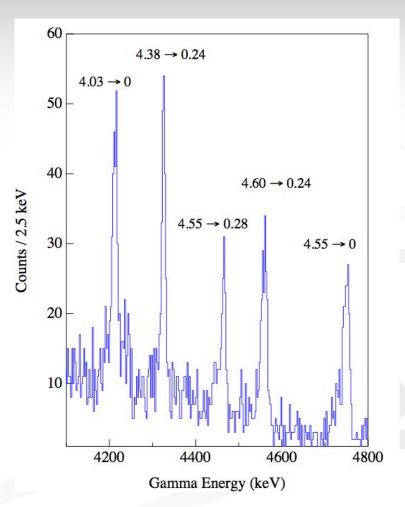


Lifetime Measurements

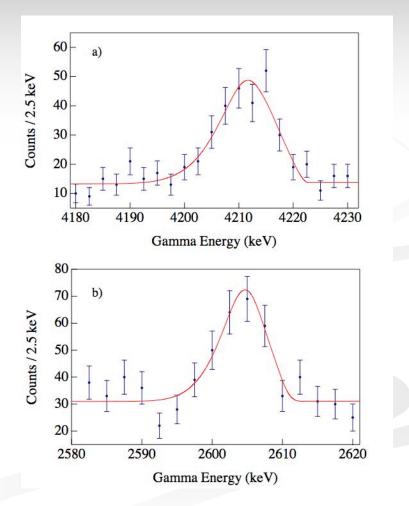
- Lifetimes measured via
 Doppler shift of emitted
 γ rays
- Fast decay ⇒ large
 Doppler shift, slow
 decay ⇒ small Doppler
 shift
- Shapes of detected γ ray lines yield lifetime; sensitive to fs lifetimes


Notre Dame Data: ${}^{17}O + {}^{3}He \rightarrow {}^{19}Ne + n$

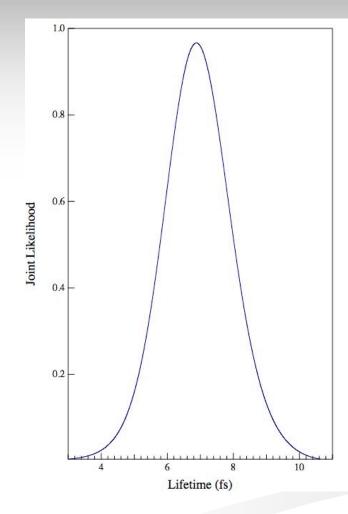
Measured ten lifetimes, precisely determined transition energies Lifetime of 4.03 MeV state = 13 (+ 9, - 6) fs


TRIUMF Measurement

- ³He-implanted gold foil target
 - $^{20}Ne + {}^{3}He \rightarrow {}^{19}Ne + \alpha$
- α particles detected in Si Δ
 E-E telescope
- ¹⁹Ne emits a γ ray after slowing down in gold foil
- Detect Doppler-shifted deexcitation γ rays from ¹⁹Ne states

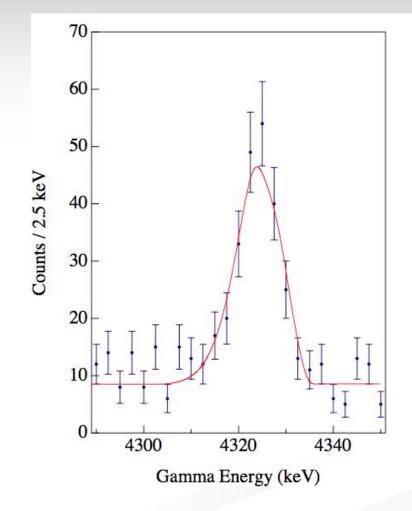

TRIUMF Data

- Measured lifetimes of 6 states above α threshold
- Two states observed via two transitions, other states only seen in one transition
- In general, lifetimes are consistent with and more precise than Notre Dame measurements



Transitions of 4.03 MeV State

- Two transitions observed, direct to ground state and also to 1536 keV state
- Two inferred lifetimes are mutually consistent



Lifetime of 4.03 MeV State

Joint likelihood analysis of two transitions yields $\tau = 6.9 \pm 1.5$ (statistical) ± 0.5 (systematic) fs

Lifetime of 4.38 MeV State

 $\tau = 2.9 \pm 1.4$ (statistical) ± 0.4 (systematic) fs

Comparison of Notre Dame and TRIUMF Lifetime Measurements

Level Energy (keV)	$\frac{E_{\gamma}(\text{keV})}{\text{Ref. [9, 27]}}$	Lifetime (fs) Ref. [9]	Lifetime (fs) Ref. [15]	Lifetime (fs) This work
1536	1297.8(4)	16±4	100. [10]	$19.1^{+0.7}_{-0.6}\pm0.9$
4034	2498.5(9)			$6.6^{+2.4}_{-2.1} \pm 0.5$
	4034.5(8)	13^{+9}_{-6}	11^{+4}_{-3}	$7.1^{+1.9}_{-1.9} \pm 0.6$
	Combined			$6.9^{+1.5}_{-1.5} \pm 0.5$
4144	2635.9(7)	18^{+2}_{-3}		$14.0^{+3.5}_{-4.0} \pm 1.2$
4200	2692.7(11)	43^{+12}_{-9}		$38^{+20}_{-10} \pm 2$
4378	4139.5(6)	5^{+3}_{-2}		$2.9^{+1.4}_{-1.4} \pm 0.4$
4548	4272.6(10)			$14.9^{+4.3}_{-3.3} \pm 1.9$
	4547.7(10)	15^{+11}_{-5}		$19.9^{+3.0}_{-3.6} \pm 1.9$
	Combined			$18.4^{+3.3}_{-3.2} \pm 1.9$
4602	4363.8(8)	7^{+5}_{-4}		$7.6^{+2.0}_{-2.0} \pm 0.7$

¹⁵O(α , γ)¹⁹Ne: Status

- Lifetimes are now well measured
- B_{α} of important low-lying states @ 4.03 and 4.38 MeV still only constrained from above by upper limits
- Combining best experimental measurements, upper limit on reaction rate still much larger (~100 times) than theoretical lower limit
- New theoretical upper limit from Cooper and Narayan 2006: find that bursts would be observed from rapidly accreting neutron stars from which only stable burning is seen, if reaction rate were more than ~ 1/25 of experimental upper limit
- Theoretical bounds on rate are presently tightest (if they are to be believed)
- More sensitive B_{α} measurements required to make further progress

Credits

- Jacob Fisker, Lawrence Livermore National Lab (xray burst calculations)
- Wanpeng Tan, University of Notre Dame (lifetime measurements)
- Mythili Subramanian, TRIUMF and University of British Columbia (lifetime measurements)