

The role of the rpprocess in accreting neutron stars

Andrew Cumming McGill University

Why are we interested in neutron stars in low mass X-ray binaries?

astrophysics

- what is the neutron star spin and magnetic field?
- how to make these binaries?
- fluids: dynamics of reactive flow, turbulent mixing, angular momentum transport...

1 nuclear physics

- rp-process burning at high temperatures and densities
- crust reactions
- nuclear equation of state above nuclear density

How can we probe the rp-process using observations? *OR*

What effect does the rp-process have on observable properties of nuclear burning?

Type I (Thermonuclear) X-ray bursts

thin shell flashes driven by unstable He burning

typical properties

recurrence times ~ hours to days durations ~ 10 - 100 seconds energies ~ 10^{39} - 10^{40} ergs spectral softening during the tail

energetics

$$\alpha \equiv \frac{\int L_{\rm accr} dt}{E_{\rm burst}} \approx \frac{GM/R}{E_{\rm nuc}}$$
$$\approx \frac{200 \text{ MeV per nucleon}}{(1-5) \text{ MeV per nucleon}}$$

reviews: Lewin, van Paradijs, & Taam (1995); Bildsten & Strohmayer (2003)

Burning regimes

Multizone models of X-ray bursts

Woosley, Heger, AC, et al. (2004)

1D stellar evolution (e.g. prescription for convection)

+

adaptive nuclear network to follow rp-process in detail at each depth

Heger, Galloway, AC (2007)

Galloway et al. (2003, 2006)

Heger et al. (2007)

Spreading during the rise?

Belt Burst Intensity (at angles 0, 45, 90) and theo. lightcurve [5s]

Kong et al. (2000)

calculation by Michael Zamfir

EXO 0748-676

EXO 0748-676

"normal" Type I burst

superburst

Some properties of superbursts

• they are rare

13 superbursts from 9 sources recurrence times ~ 1-2 years

• they are long duration and energetic

1000 times "normal" Type I bursts energies ~ 10^{42} ergs exponential decay times 1-3 hours

 they "interact" with normal Type I bursts they "quench" normal bursting for ~ 3 weeks normal bursts are seen as "precursors"

KS 1731-260 Kuulkers et al. (2002)

Schatz et al. (1999)

Ed Brown (2004) and Cooper & Narayan (2005) pointed out that constant outwards flux is not a good assumption, instead you should look at the entire T profile of the star.

Modelling superburst lightcurves

• fits to observed lightcurves

$$y \approx 10^{12} \text{ g cm}^{-2}$$

 $E \approx 2 \times 10^{17} \text{ erg g}^{-1}$
 $(X_C = 0.1 - 0.2)$

Cumming & Macbeth (2004) Cumming et al. (2005)

$T_{\rm peak} > 2.5 \times 10^9 {\rm K}$ at superburst ignition **Energetics** photodisintegration ~ 0.1 MeV/nucleon carbon burning ~ 1 MeV/nucleon Photodisintegration dominates for small X_c! at peak temperature Schatz, Bildsten, & Cumming (2003)

Photodisintegration

Carbon production in rp process burning

Schatz, Bildsten, Cumming, Ouellette (2003)

protons rapidly capture on carbon (carbon "poison")

 \Rightarrow make carbon after the hydrogen runs out

 \Rightarrow anti-correlation between X_{C} and heavy element mass

• **stable burning needed** to make > few % ¹²C by mass

consistent with observed burst energetics in superburst sources!

BUT stable burning at accretion rates ~ 0.1 Eddington not understood!

Superbursts occur when (some) hydrogen/helium is burning stably in 't Zand (2003)

Object name	$T_{\rm C}^{(\rm a)}$	$lpha^{(\mathrm{b})}$	$\alpha^{(c)}$	$ au^{(d)}$ [s]	
4U 1254-69	4.6	4800		6 ± 2 (15)	
4U 1636-536	0.6	440	44-336[1]	6.2 ± 0.1 (67)	
KS 1731-260 ^(e)	0.8	780	30-690[2]	5.6 ± 0.2 (37)	Superburst
4U 1735-444	2.4	4400	220-7728[3]	3.2 ± 0.3 (34)	sources
GX 3+1	1.2	2100	1700-		
			21 000 ^[4]	4.6 ± 0.1 (61)	
4U 1820-303	1.5	2200		4.5 ± 0.2 (47)	
Ser X-1	2.9	5800		5.7 ± 0.9 (7)	
EXO 0748-676	1.0	140	18-34[5]	12.8 ± 0.4 (155)	
4U 1702-429	0.3	58		7.7 ± 0.2 (107)	
4U 1705-44	1.1	1600	55-1455[6]	8.7 ± 0.4 (74)	No superbursts
GX 354-0	0.2	97	105-140[7]	4.7 ± 0.1 (417)	
A 1742-294	0.4	130		$16.8 \pm 1.0 \ (141)$	
GS 1826-24	0.2	32	41 ^[8]	$30.8 \pm 1.5 \ (248)$	

Carbon production in steady burning

Schatz et al. (2007)

Carbon production in steady burning

Schatz et al. (2007)

Summary

- **lightcurves:** need to systematically explore the dependence of multizone model lightcurves on input rp-process data
- **superbursts:** how is the carbon made? how to make the crust hot enough?
- other questions: transition to stable burning, mHz qpos, transport of rp-process elements to the photosphere (and beyond...?) are the "ten minute" bursts coming from nuclear physics?