Nuclear burning on accreting neutron stars: where are we?

Andrew Cumming (McGill University)

X-ray bursts

• they are (sometimes) sensitive to the thermal state of the neutron star interior

 they determine the composition that enters the top of the crust

• they are a surface phenomena, a chance to study the neutron star while accretion is ongoing

 interesting nuclear physics on the proton rich side (rp-process) during H/He burning

Outline

 lots of new phenomena: burst oscillations, superbursts, rare bursts (long and short)... can we put those into a global picture ?

• I will argue that mHz QPOs are likely the key to doing this ... are we close to solving a 20 year old puzzle?

Basic understanding of Type I bursts

a relaxation oscillator: accumulation of fuel followed by rapid burning

gravitational energy release

 $\frac{GM}{R} \approx 200 \; {\rm MeV} \; {\rm per} \; {\rm nucleon}$ nuclear energy release

 $Q_{\rm nuc} \approx (1-5)$ MeV per nucleon

$$\alpha \equiv \frac{\int F_p \, dt}{\int F_b \, dt} \approx \frac{GM/R}{Q_{\text{nuc}}}$$
$$\approx (40 - 100)$$

Thin shell instability

• The pressure at the base of the thin layer is fixed by the weight of the overlying material

=> the shell has a positive heat capacity

Schwarzschild & Härm (1958)

• The entropy equation for the layer is

$$c_P \frac{dT}{dt} = \varepsilon - \frac{1}{\rho} \nabla \cdot F$$

• The condition for a thermal runaway is

$$\frac{d\epsilon_{3\alpha}}{dT} > \frac{d\epsilon_{\rm cool}}{dT} \qquad \qquad \epsilon_{\rm cool} \approx \frac{acT^4}{3\kappa y^2}$$

• For H/He, predict ignition at column depth $\approx 10^8 \text{ g cm}^{-2}$ => recurrence time at 0.1 \dot{m}_{Edd} is a few hours => energy is $10^{21} \text{ g} \times 10^{18} \text{ erg g}^{-1} \approx 10^{39} \text{ ergs}$ => cooling time is ~ 10 seconds

Taam, Woosley, Joss, Fujimoto (late 1970s, 1980s)

At high enough accretion rates, hot CNO hydrogen burning between bursts heats the accumulating layer and depletes hydrogen

"hot" CNO cycle $T > 8 \times 10^7 \text{ K}$ (Hoyle & Fowler 1965)

time to burn the hydrogen in a given fluid element is

$$t_{H} = 11 \text{ hrs } \left(\frac{0.02}{Z}\right) \left(\frac{X_{0}}{0.7}\right)$$
mass fraction of CNO

H burning gives ~ 7 MeV per nucleon compared to ~ 0.1 MeV per nucleon emerging from the crust

Burning regimes

BeppoSAX (Ubertini et al. 1997; Cocchi et al. 2000)

a model of H/He accumulation gives ignition at 2 x 10^8 g/cm² (2 x 10^{21} g)

if the nuclear burning gives 3 MeV per nucleon, expect 6 x 10^{39} ergs at an accretion rate of 0.1 Eddington, this mass is accreted in 2 x 10^{4} s = 5.5 hours

long tails from rp-process? Bildsten (2000)

Multizone models of X-ray bursts

Woosley et al. (2004)

1D stellar evolution (e.g. prescription for convection)

╋

adaptive nuclear network to follow rp-process in detail at each depth

Comparison with observations: GS 1826-24

Heger, Galloway, AC (2007)

Spreading during the rise?

Belt Burst Intensity (at angles 0, 45, 90) and theo. lightcurve [5s]

Kong et al. (2000)

calculation by Michael Zamfir

SAX J1808.4-3654

• Transiently accreting millisecond X-ray pulsar

• Burst sequence observed during 2002 outburst can be understood as accretion of solar CNO abundance material with X~0.5 at ~0.06 Edd (parameters: Q_b , Z_{CNO} , X_0)

• Hydrogen burns away before ignition => pure He layer $(t_{burn} = 12 \text{ hours for solar material; observed } \Delta t \sim 24 \text{ hours})$

Galloway & Cumming (2006)

• the burst properties need $Q_b=0.3$ MeV/nucleon or $L_{crust} = 2 \times 10^{34}$ erg/s

SAX J1808.4-3654

EXO 0748-676

Brandon Helfield et al. (2007)

Superburst lightcurves

Cumming & Macbeth (2004)

Superbursts: lightcurves

Cumming, Macbeth, in 't Zand, & Page (2005)

Superbursts: lightcurves

E₁₇=2 y₁₂=0.5-3

Source	$f_{\rm peak}{}^{\rm a}$	$d/R^{\rm b}$	E_{17}^{c}	<i>y</i> 12 ^c
4U 1254-690	0.22	13	1.5	2.7
4U 1735-444	1.5	8	2.6	1.3
KS 1731-260	2.4	4.5	1.9	1.0
GX 17+2 burst 2	0.8	8	1.8	0.64
Ser X-1	1.9	6	2.3	0.55
4U 1636-54	2.4	5.9	2.6	0.48

Cumming et al. (2006)

Cumming & Macbeth (2004)

Superbursts: quenching

Cumming & Macbeth (2003)

Superbursts: ignition models

Cumming, Macbeth, in 't Zand, & Page (2005)

Comparison with quiescent luminosity of transients

KS 1731-260 Q_b=0.02 MeV at 0.1 Edd

(20-30 times smaller than needed for the superburst)

SAX J1808 the burst properties need $Q_b=0.3$ MeV/nucleon or $L_{crust} = 2 \times 10^{34}$ erg/s

>100 times greater than quiescent luminosity

Superbursts from strange stars

Strange stars have no inner crust => no Cooper pair neutrinos!

Alcock, Farhi, & Olinto 1986

Carbon production in the rp-process

Superbursts occur when (some) hydrogen/helium is burning stably in 't Zand (2003)

Object name	$T_{\rm C}^{(\rm a)}$	$lpha^{(\mathrm{b})}$	$\alpha^{(c)}$	$ au^{(d)}$ [s]	
4U 1254-69	4.6	4800		6 ± 2 (15)	
4U 1636-536	0.6	440	44-336[1]	6.2 ± 0.1 (67)	
KS 1731-260 ^(e)	0.8	780	30-690[2]	5.6 ± 0.2 (37)	Superburst
4U 1735-444	2.4	4400	220-7728[3]	3.2 ± 0.3 (34)	sources
GX 3+1	1.2	2100	1700-		Sources
			21 000 ^[4]	4.6 ± 0.1 (61)	
4U 1820-303	1.5	2200		4.5 ± 0.2 (47)	
Ser X-1	2.9	5800		5.7 ± 0.9 (7)	
EXO 0748-676	1.0	140	18-34 ^[5]	12.8 ± 0.4 (155)	
4U 1702-429	0.3	58		7.7 ± 0.2 (107)	
4U 1705-44	1.1	1600	55-1455[6]	8.7 ± 0.4 (74)	No superbursts
GX 354-0	0.2	97	105-140[7]	4.7 ± 0.1 (417)	
A 1742-294	0.4	130		$16.8 \pm 1.0 \ (141)$	
GS 1826-24	0.2	32	41 ^[8]	$30.8 \pm 1.5 \ (248)$	

Carbon production in steady burning

Schatz et al. (2007)

Carbon production in steady burning

Schatz et al. (2007)

Superbursts: ignition models

Keek, in 't Zand, & Cumming (2005)

Superbursts as carbon flashes: scorecard

- Fuel production Schatz et al. 2003; in 't Zand et al. 2003
 Can make ~ 10% carbon from the rp-process in STABLE burning
 but don't know how to burn stably at 0.1 Eddington X
 Observed superbursters show stable burning (high alphas)
- Lightcurves and energies Strohmayer & Brown 2002; Cumming & Macbeth 2004 model lightcurves show power-law cooling which explains long tails "neutrino thermostat" explains characteristic 10⁴² ergs energy
- Narrow range of accretion rates CB01; CM04; in 't Zand et al. 2002
 >0.1 Eddington to get unstable carbon ignition (and to make the carbon by stable burning?)
 superbursts found in the near-Eddington accretor GX 17+2
- Quenching of normal bursts CB01; CM04

late time cooling quenches unstable helium burning for about a month, agrees with disappearance of Type I bursts following superburst \checkmark

• Recurrence times Brown 2004; Cooper & Narayan 2005 Need large heat flux to obtain ignition temperature at the right depth

Pure helium bursts from ultracompact binaries

- Binaries with P<80 minutes => hydrogen deficient companion
- "What is the accreted composition?"
- Two examples:
 - 4U 1820-30 (P=10 mins) regular bursts with Δt~3 hours can understand if accrete pure He but need Q_b~0.4 MeV/nucleon at 0.3 Edd Bildsten (1995); Cumming (2003) is there a small amount of hydrogen (X~0.1)? e.g. Podsiadlowski et al. (2002)
 - 2. **2S 0918-549** (P unknown; ~20 mins?)

enhanced Ne/O ratio => CO accretion disk? long burst with E~10⁴¹ erg naturally explained as pure helium accretion at the observed (persistent) 0.01 Edd need Q_b~1 MeV/nucleon

in 't Zand, AC, Verbunt, van der Sluys, Pols et al. (2005)

Pure helium bursts from ultracompact binaries

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

flux variations at ~few percent level

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

- flux variations at ~few percent level
- unusually for a QPO, they are *soft* (<5 keV)

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

- flux variations at ~few percent level
- unusually for a QPO, they are *soft* (<5 keV)
- they occur in a narrow range of luminosity $(0.5-1.5) \times 10^{37} \text{ erg/s}$

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

- flux variations at ~few percent level
- unusually for a QPO, they are *soft* (<5 keV)
- they occur in a narrow range of luminosity $(0.5-1.5) \times 10^{37} \text{ erg/s}$
- Yu and van der Klis (2002) found an anticorrelation between mHz QPO amplitude and kHz QPO frequency

A new mode of nuclear burning?

• Revnitsev et al. (2001) suggested that we are seeing a **new mode** of nuclear burning

• Importance: first QPO identified with NS surface rather than the accretion flow

• Open questions:

what sets the oscillation period ~ 2 mins? (stable over many years)

why the narrow luminosity range?

• Marginally stable nuclear burning answers these questions, but brings back an old puzzle!

Calculations of the transition to stable burning

• Extensions of the Woosley et al. 2003 ApJS calculations to higher accretion rates

• Kepler code, follow >1000 nuclei at each depth

• At the boundary between unstable and stable burning see oscillations with periods of 3 minutes

(2005)

Calculations of the transition to stable burning

- Extensions of the Woosley et al. 2003 ApJS calculations to higher accretion rates
- Kepler code, follow >1000 nuclei at each depth
- At the boundary between unstable and stable burning see oscillations with periods of 3 minutes
- Amplitude and shape of the oscillation similar to the observed mHz QPOs

The physics of the oscillation

• Paczynski (1981) suggested that oscillations should be present at the boundary between unstable and stable burning

• The physics is present in the canonical non-linear oscillator: the *van der Pol oscillator*

The physics of the oscillation

• A clock on the NS surface that depends on g, X ... no mdot uncertainty!

BUT...

• theoretically, the transition to unstable burning occurs close to Eddington => 10^{38} erg/s whereas the observed luminosity is ~ 10^{37} erg/s

• what matters is the local accretion rate - one way out is that the accreted material covers only 10% of the area ?

What happens at L_X~10³⁷ erg/s?

