Nuclear burning on accreting neutron stars: where are we?

Andrew Cumming (McGill University)

X-ray bursts

• they are (sometimes) sensitive to the thermal state of the neutron star interior

• they determine the composition that enters the top of the crust

• they are a surface phenomena, a chance to study the neutron star while accretion is ongoing

• interesting nuclear physics on the proton rich side (rp-process) during H/He burning

Outline

• lots of new phenomena: burst oscillations, superbursts, rare bursts (long and short)… can we put those into a global picture ?

• I will argue that mHz QPOs are likely the key to doing this … are we close to solving a 20 year old puzzle?

Basic understanding of Type I bursts

a relaxation oscillator: accumulation of fuel followed by rapid burning

gravitational energy release

 $\frac{GM}{R} \approx 200$ MeV per nucleon nuclear energy release

 $Q_{\text{nuc}} \approx (1-5)$ MeV per nucleon

$$
\alpha \equiv \frac{\int F_p \, dt}{\int F_b \, dt} \approx \frac{GM/R}{Q_{\text{nuc}}} \approx (40 - 100)
$$

Thin shell instability

The pressure at the base of the thin layer is fixed by the weight of the \bullet overlying material

=> the shell has a positive heat capacity

Schwarzschild & Härm (1958)

The entropy equation for the layer is \bullet

$$
c_P \frac{dT}{dt} = \varepsilon - \frac{1}{\rho} \nabla \cdot F
$$

• The condition for a thermal runaway is

$$
\frac{d\epsilon_{3\alpha}}{dT} > \frac{d\epsilon_{\text{cool}}}{dT} \qquad \epsilon_{\text{cool}} \approx \frac{acT^4}{3\kappa y^2}
$$

For H/He, predict ignition at column depth $\approx 10^8$ g cm⁻² \Rightarrow recurrence time at 0.1 \dot{m}_{Edd} is a few hours => energy is \Rightarrow cooling time is \sim 10 seconds

Taam, Woosley, Joss, Fujimoto (late 1970s, 1980s)

At high enough accretion rates, hot CNO hydrogen burning between bursts heats the accumulating layer and depletes hydrogen

"hot" CNO cycle $T > 8 \times 10^7$ K (Hoyle & Fowler 1965)

time to burn the hydrogen in a given fluid element is

$$
t_H = 11 \text{ hrs} \left(\frac{0.02}{Z}\right) \left(\frac{X_0}{0.7}\right)
$$

mass fraction of CNO

H burning gives ~ 7 MeV per nucleon compared to \sim 0.1 MeV per nucleon emerging from the crust

Burning regimes

Taam, Woosley, Joss, Fujimoto (late 1970s, 1980s), Bildsten (1998)

BeppoSAX (Ubertini et al. 1997; Cocchi et al. 2000)

a model of H/He accumulation gives ignition at 2 x 10⁸ g/cm² (2 x 10²¹g)

if the nuclear burning gives 3 MeV per nucleon, expect 6×10^{39} ergs at an accretion rate of 0.1 Eddington, this mass is accreted in 2×10^4 s = 5.5 hours

long tails from rp-process? Bildsten (2000)

Multizone models of X-ray bursts

Woosley et al. (2004)

1D stellar evolution (e.g. prescription for convection)

+

adaptive nuclear network to follow rp-process in detail at each depth

Comparison with observations: GS 1826-24

Heger, Galloway, AC (2007)

Spreading during the rise?

Belt Burst Intensity (at angles 0, 45, 90) and theo. lightcurve [5s]

Kong et al. (2000)

calculation by Michael Zamfir

SAX J1808.4-3654

• Transiently accreting millisecond X-ray pulsar

• Burst sequence observed during 2002 outburst can be understood as accretion of solar CNO abundance material with X~0.5 at ~0.06 Edd (parameters: Q_b , Z_{CNO} , X_0)

• Hydrogen burns away before ignition => pure He layer (t_{burn} = 12 hours for solar material; observed $\Delta t \sim 24$ hours)

Galloway & Cumming (2006)

• the burst properties need $Q_b = 0.3$ MeV/nucleon or L_{crust} = 2 x 10³⁴ erg/s

SAX J1808.4-3654

EXO 0748-676

Brandon Helfield et al. (2007)

Superburst lightcurves

Cumming & Macbeth (2004)

Superbursts: lightcurves

Cumming, Macbeth, in 't Zand, & Page (2005)

Superbursts: lightcurves

 $E_{17}=2$ $y_{12}=0.5-3$

Source	$f_{\rm peak}$ ^a	d/R^b	E_{17} ^c	y_{12} ^c
4U 1254-690	0.22	13	1.5	2.7
4U 1735-444	1.5	8	2.6	1.3
KS 1731-260	2.4	4.5	1.9	1.0
$GX 17+2 burst 2$	0.8	8	1.8	0.64
$Ser X-1$	1.9	6	2.3	0.55
4U 1636-54	2.4	5.9	2.6	0.48

Cumming et al. (2006)

Cumming & Macbeth (2004)

Superbursts: quenching

Cumming & Macbeth (2003)

Superbursts: ignition models

Cumming, Macbeth, in 't Zand, & Page (2005)

Comparison with quiescent luminosity of transients

KS 1731-260 $Q_b = 0.02$ MeV at 0.1 Edd

(20-30 times smaller than needed for the superburst)

SAX J1808 the burst properties need Q_b=0.3 MeV/nucleon or L_{crust} = 2 x 10³⁴ erg/s

>100 times greater than quiescent luminosity

Superbursts from strange stars

Strange stars have no inner crust => no Cooper pair neutrinos!

Alcock, Farhi, & Olinto 1986

Carbon production in the rp-process

Superbursts occur when (some) hydrogen/helium is burning stably in 't Zand (2003)

Carbon production in steady burning

Schatz et al. (2007)

Carbon production in steady burning

Schatz et al. (2007)

Superbursts: ignition models

Keek, in 't Zand, & Cumming (2005)

Superbursts as carbon flashes: scorecard

- **Fuel production** Can make \sim 10% carbon from the rp-process in STABLE burning $\sqrt{ }$ but don't know how to burn stably at 0.1 Eddington Observed superbursters show stable burning (high alphas) $\sqrt{}$ Schatz et al. 2003; in 't Zand et al. 2003
- **Lightcurves and energies** model lightcurves show power-law cooling which explains long tails $\sqrt{}$ "neutrino thermostat" explains characteristic 10⁴² ergs energy $\sqrt{}$ Strohmayer & Brown 2002; Cumming & Macbeth 2004
- **Narrow range of accretion rates** CB01; CM04; in 't Zand et al. 2002 >0.1 Eddington to get unstable carbon ignition (and to make the carbon by stable burning?) $\sqrt{}$ superbursts found in the near-Eddington accretor GX 17+2
- **Quenching of normal bursts** CB01; CM04

late time cooling quenches unstable helium burning for about a month, agrees with disappearance of Type I bursts following superburst \checkmark

• **Recurrence times** Need large heat flux to obtain ignition temperature at the right depth Brown 2004; Cooper & Narayan 2005

Pure helium bursts from ultracompact binaries

- Binaries with P<80 minutes => hydrogen deficient companion
- \bullet "What is the accreted composition?"
- Two examples:
	- 1. **4U 1820-30** (P=10 mins) regular bursts with Δt~3 hours can understand if accrete pure He but need $Q_b \sim 0.4$ MeV/nucleon at 0.3 Edd is there a small amount of hydrogen $(X<0.1)$? Bildsten (1995); Cumming (2003) e.g. Podsiadlowski et al. (2002)
	- 2. **2S 0918-549** (P unknown; ~20 mins?)

enhanced Ne/O ratio => CO accretion disk? long burst with $E~10^{41}$ erg naturally explained as pure helium accretion at the observed (persistent) 0.01 Edd need Q_b ~1 MeV/nucleon

in 't Zand, AC, Verbunt, van der Sluys, Pols et al. (2005)

Pure helium bursts from ultracompact binaries

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

• flux variations at ~few percent level

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

- flux variations at ~few percent level
- unusually for a QPO, they are *soft* (<5 keV)

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

- flux variations at ~few percent level
- unusually for a QPO, they are *soft* (<5 keV)
- they occur in a narrow range of luminosity $(0.5-1.5) \times 10^{37}$ erg/s

• discovered from Atoll sources 4U 1608-52, 4U 1636-53, Aql X-1 by Revnitsev et al. (2001) with frequencies (7-9) mHz

- flux variations at ~few percent level
- unusually for a QPO, they are *soft* (<5 keV)
- they occur in a narrow range of luminosity $(0.5-1.5) \times 10^{37}$ erg/s
- Yu and van der Klis (2002) found an anticorrelation between mHz QPO amplitude and kHz QPO frequency

A new mode of nuclear burning?

• Revnitsev et al. (2001) suggested that we are seeing a **new mode of nuclear burning**

• Importance: first QPO identified with NS surface rather than the accretion flow

• Open questions:

what sets the oscillation period ~ 2 mins? (stable over many years)

why the narrow luminosity range?

• Marginally stable nuclear burning answers these questions, but brings back an old puzzle!

Calculations of the transition to stable burning

• Extensions of the Woosley et al. 2003 ApJS calculations to higher accretion rates

• Kepler code, follow >1000 nuclei at each depth

• At the boundary between unstable and stable burning see oscillations with periods of 3 minutes

(2005)`

Calculations of the transition to stable burning

- Extensions of the Woosley et al. 2003 ApJS calculations to higher accretion rates
- Kepler code, follow >1000 nuclei at each depth
- At the boundary between unstable and stable burning see oscillations with periods of 3 minutes
- Amplitude and shape of the oscillation similar to the observed mHz QPOs

The physics of the oscillation

• Paczynski (1981) suggested that oscillations should be present at the boundary between unstable and stable burning

• The physics is present in the canonical non-linear oscillator: the *van der Pol oscillator*

The physics of the oscillation

• A clock on the NS surface that depends on g, X … no mdot uncertainty!

BUT…

• theoretically, the transition to unstable burning occurs close to Eddington $=$ $> 10^{38}$ erg/s whereas the observed luminosity is $\sim 10^{37}$ erg/s

• what matters is the local accretion rate - one way out is that the accreted material covers only 10% of the area ?

What happens at Lx~10³⁷ erg/s?

