

Theoretical Predictions

- Bursts at all $M < M_{Edd}$
- Bursts have long durations
- Burst rate increases with \dot{M}
- Little stable burning
- No ¹²C for superbursts

Theoretical Predictions

Observations

- **However Bursts at all** $M < M_{Edd}$
 - Bursts have long durations
 - Burst rate increases with \dot{M}
 - Little stable burning
 - No ¹²C for superbursts

• Bursts *cease* for $M > 0.3 M_{Edd}$

Theoretical Predictions

- **K** Bursts at all $M < M_{Edd}$

 - Burst rate increases with M
 - Little stable burning
 - No ¹²C for superbursts

- Bursts cease for $M > 0.3 M_{Edd}$
- Bursts have long durations Bursts have short durations

Theoretical Predictions

- Bursts at all *M* < *M*_{Edd}
- Burst rate increases with \dot{M}
- Little stable burning
- No ¹²C for superbursts

- Bursts cease for $M > 0.3 M_{Edd}$
- Bursts have long durations Bursts have *short* durations
 - Burst rate decreases with M

Theoretical Predictions

Bursts at all $\dot{M} < \dot{M}_{Edd}$ Bursts have long durations Burst rate increases with \dot{M} Little stable burning

• No ¹²C for superbursts

- Bursts cease for $M > 0.3 M_{Edd}$
- Bursts have short durations
- Burst rate *decreases* with *M*
- Lots of stable burning

Theoretical Predictions

Bursts at all $\dot{M} < \dot{M}_{Edd}$ Bursts have long durations Burst rate increases with \dot{M} Little stable burning No ¹²C for superbursts

- Bursts *cease* for $M > 0.3 M_{Edd}$
- Bursts have short durations
- Burst rate *decreases* with *M*
- Lots of stable burning
- Superbursts occur

Theoretical Predictions

Bursts at all $\dot{M} < \dot{M}_{Edd}$ Bursts have long durations Burst rate increases with \dot{M} Little stable burning No ¹²C for superbursts

Observations

- Bursts cease for $M > 0.3 M_{Edd}$
- Bursts have *short* durations
- Burst rate *decreases* with *M*
- Lots of stable burning
- Superbursts occur

All of these discrepancies relate to the manner in which the accreted matter burns prior to type I X-ray bursts!

Need to understand the nuclear physics of the burst onset...

Outline

- 1. Introduction to bursts
- 2. Thermal instability that triggers bursts
- 3. Nuclear reactions of burst onset
 - 3α reaction
 - Hot CNO cycle breakout reactions
- 4. Possible ways forward?

Low-Mass X-ray Binaries

Type I X-ray Bursts

Thermonuclear explosions on accreting neutron stars

Burst properties

- t_{recur} ~ hours days
- *t_{rise}* ~ 1 s
- *t_{decay}* ~ 10 100 s

Why does it burst?

Consider quiescent nuclear burning of accreting matter...

 $\epsilon_{nuc} = \text{heating rate due to nuclear burning}$ $\epsilon_{cool} = \text{cooling rate due to radiative diffusion \& emission}$ In steady state: $\epsilon_{nuc} = \epsilon_{cool}$ $\frac{\gamma \quad \gamma \quad \gamma \quad \gamma \quad \gamma \quad \gamma}{1 \text{ for } \gamma \quad \gamma \quad \gamma \quad \gamma}$ Stability analysis: if $\frac{\partial \epsilon_{nuc}}{\partial \epsilon_{nuc}} > \frac{\partial \epsilon_{cool}}{\partial \epsilon_{cool}}$

burning is thermally unstable!

 ∂T

AТ

Which reactions trigger bursts?

Burst Trigger

First guess: hydrogen burning

For $T < 8 \times 10^7$ K, H burns via cold CNO cycle ${}^{12}C(p,\gamma){}^{13}N(\beta^+\nu){}^{13}C(p,\gamma){}^{14}N(p,\gamma){}^{15}O(\beta^+\nu){}^{15}N(p,\alpha){}^{12}C$ but for $T > 8 \times 10^7$ K, H burns via hot CNO cycle

 ${}^{12}C(\rho,\gamma){}^{13}N(\rho,\gamma){}^{14}O(\beta^{+}\nu){}^{14}N(\rho,\gamma){}^{15}O(\beta^{+}\nu){}^{15}N(\rho,\alpha){}^{12}C$

Slow ¹⁴O and ¹⁵O decay rates ($\tau_{1/2} \approx 70$ s and 120 s, respectively) make hot CNO cycle *T*-independent!

Second guess: helium burning

Helium burns via the 3α reaction

 $\alpha + \alpha + \alpha \rightarrow {}^{12}C$

H and He Burning Depths

 $\epsilon_{\rm He}$ is very *T*-sensitive, so $\Sigma_{\rm He}$ (column depth at which He depletes via nuclear burning) *decreases* with Σ (local accretion rate).

 $ε_{\rm H}$ depends only on CNO abundance, so $Σ_{\rm H} = Σt_{\rm H}$ increases with Σ.

 \Rightarrow at high *M*, He ignites in a H-rich environment!

How does H affect thermal instability?

Nuclear Reactions

Hot CNO cycle hydrogen burning (*T*-independent!):

 ${}^{12}C(p,\gamma){}^{13}N(p,\gamma){}^{14}O(\beta^{+}\nu){}^{14}N(p,\gamma){}^{15}O(\beta^{+}\nu){}^{15}N(p,\alpha){}^{12}C$

 $\alpha + \alpha + \alpha \rightarrow {}^{12}C$

 3α reaction:

Interplay between reactions:

H burning generates He for 3α reaction He burning generates seed nuclei for hot CNO cycle

Hot CNO cycle stabilizes nuclear burning, so to initiate a thermal instability and hence a bursts, H burning must "break out" of the hot CNO cycle!

Hot CNO Cycle Breakout

H must break out of hot CNO cycle to trigger at burst!

 $(\alpha,\gamma)^{19}\text{Ne}(p,\gamma)^{20}\text{Na}...$ $3\alpha \rightarrow {}^{12}\text{C}(p,\gamma)^{13}\text{N}(p,\gamma)^{14}\text{O}(\beta^{+}\nu)^{14}\text{N}(p,\gamma)^{15}\text{O}(\beta^{+}\nu)^{15}\text{N}(p,\alpha)^{12}\text{C}$ $(\alpha,p)^{17}\text{F}(p,\gamma)^{18}\text{Ne}...$

Burning must flow through ${}^{14}O(\alpha,\rho){}^{17}F$ for a thermal instability, but it won't activate without a "push" from ${}^{15}O(\alpha,\gamma){}^{19}Ne...$

 3α and ${}^{15}O(\alpha,\gamma){}^{19}Ne$ TOGETHER govern stability!!!

Nuclear Reactions at Burst Onset

¹⁵O(α , γ)¹⁹Ne and Thermal Stability

The stability of nuclear burning is very sensitive to the strength of the uncertain ${}^{15}O(\alpha,\gamma){}^{19}Ne$ rate!

Lowering rate by ~10:

•Reduces critical *M* above which bursts cease

- Shortens burst duration
- Increases stable burning

•Produces more ¹²C for superbursts

Looks promising! But there is a problem...

¹⁵O(α , γ)¹⁹Ne and Thermal Stability

If rate is too low, burning generates weak oscillations

Implications and Speculations

Observations imply that, in quiescence, H burns via the hot CNO to a greater extent than currently predicted.

Is the discrepancy due to

- Uncertainties in nuclear physics (i.e. reactions in hot CNO cycle breakout flows)?
- Sedimentation? (Peng, Brown, & Truran 2007)
- Turbulent mixing? (Piro & Bildsten 2007)

...or should we take the predictions at face value and look elsewhere (e.g. spreading of accreted matter over stellar surface; Heger, Cumming, & Woosley 2007)?