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Pairing Gaps in low-density
neutron matter and in cold atoms

length scale: micrometer
temp./Energy: nanokelvin

length scale:  fermi
temperature/energy: MeV



Even if no new phases, parameters including
Superfluid gap Δ are important

Superfluid gap for
  low-density neutron
  matter affects cooling

Benchmark for pairing in
  the strong-coupling QCD

QCD at high densities

Neutron star cooling curves
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Alex Gezerlis Quantum Monte Carlo and Neutron Star Matter Superfluidity

Fundamental problem in quantum many-body physics:
 transition from weak (BCS) to strong (BEC) pairing 
� and `exotic’ states of matter



Rich Set of Experimental Results in Cold Fermi 
Atoms: MIT, JILA, Rice, Duke, Innsbruck 

Experimental procedure
To create a strongly interacting Fermi gas, spin-polarized fermionic
6Li atoms were sympathetically cooled to degeneracy by 23Na atoms
in a magnetic trap24. The Fermi cloud was then loaded into an optical
dipole trap, and an 875G external magnetic field was applied. Here
a 50%/50% spin mixture of the two lowest hyperfine states of 6Li
was prepared. Between these two states, labelled j1l and j2l, there is a
300-G-wide Feshbach resonance located at 834 G (refs 25, 26).
Evaporative cooling (achieved by reducing the laser power)
accompanied by a magnetic field ramp to 766G on the BEC-side
of the resonance typically produced a BEC of 3 £ 106 molecules3.
Previous experiments studying the rotation of atomic BECs

employed magnetic traps operating at low bias fields27–31. Because
the Feshbach resonance in our system occurs between two high-field
seeking states that cannot be trapped magnetically, an optical dipole
trap operating at high magnetic bias fields was necessary. Our set-up
employed a trapping beam with a 1/e2 radius of 123 mm (wavelength
1,064 nm), radially confining the gas with a trap frequency of 59Hz at
a power of 145 mW. Axial confinement with trap frequency
n z ¼ 23Hz was provided by an applied magnetic field curvature
that decreased the radial trap frequency to n r ¼ 57Hz. The aspect
ratio of the trapwas 2.5. In this trap, at a field of 766G, condensates of
1 £ 106 molecules (the typical number in our experiment after
rotating the cloud) have Thomas–Fermi radii of about 45 mm radially
and 110 mm axially, a peak molecular density of 2.6 £ 1012 cm23, a
chemical potential of about 200 nK, and a characteristic microscopic
length scale of 1/kF < 0.3 mm. Here, the Fermi wavevector kF is
defined by the Fermi energy (EF) of a non-interacting two-state
mixture of 6Li atoms of mass m with total atom number N in a
harmonic trap of (geometric) mean frequency !q; EF ¼ " !qð3NÞ1=3 ;
"2k2F=2m: Throughout this Article we will estimate the interaction
parameter 1/k Fa using the average number of fermion pairs
N/2 ¼ 1 £ 106. Here, a is the scattering length between atoms in
states j1l and j2l: At a field of 766G, 1/kFa ¼ 1.3. Because this gas is
strongly interacting, it is difficult to extract a temperature from the
spatial profile. For weaker interactions (at 735G) the condensate
fraction was in excess of 80%, which would isentropically connect to
an ideal Fermi gas32 at T/T F ¼ 0.07. The BEC–BCS crossover
(1=kFjaj , 1) occurs in the region between 780G and 925G.
The trapped cloud was rotated about its long axis using a blue-

detuned laser beam (wavelength 532 nm)28,29,33. A two-axis acousto-
optic deflector generated a two-beam pattern (beam separation
d ¼ 60 mm, gaussian beam waist w ¼ 16 mm) that was rotated
symmetrically around the cloud at a variable angular frequency Q.

The two beams with 0.4mW power each produced a repulsive
potential of 125 nK for the 6Li cloud, creating a strongly anisotropic
potential. This method was first tested using a weakly interacting,
atomic BEC of 23Na in the stretched upper hyperfine state in an
optical trap with n r ¼ 60Hz, n z ¼ 23Hz. Fully equilibrated lattices
of up to 80 vortices were observed. The vortex number decayedwith a
1/e lifetime of 4.2 ^ 0.2 s, while the atom number decayed, owing to
three-body losses and evaporation, with a lifetime of 8.8 ^ 0.4 s. The
roundness of the optical trap and its alignment with both the optical
stirrer and the axes of the magnetic potential were critical. Any
deviation from cylindrical symmetry owing to misalignment, optical
aberrations, or gravity rapidly damped the rotation. The generation
of vortices in sodium was comparatively forgiving, and had to be
optimized before vortices in 6Li2 could be observed.

Observation of vortex lattices
In experiments with 6Li close to the Feshbach resonance, the
interaction strength between atoms in states j1l and j2l can be freely
tuned via the magnetic field. Thus, it is possible to choose different
magnetic fields to optimize the three steps involved in the creation of
a vortex lattice: stirring of the cloud (for 800ms at a typical stirring
frequency of 45Hz), the subsequent equilibration (typically 500ms)
and time-of-flight expansion for imaging. To stay close to the

Figure 2 | Vortices in a strongly interacting gas of fermionic atoms on the
BEC- and the BCS-side of the Feshbach resonance. At the given field, the
cloud of lithium atoms was stirred for 300ms (a) or 500ms (b–h) followed
by an equilibration time of 500ms. After 2ms of ballistic expansion, the

magnetic field was ramped to 735G for imaging (see text for details). The
magnetic fields were 740G (a), 766G (b), 792G (c), 812G (d), 833G (e),
843G (f), 853G (g) and 863G (h). The field of view of each image is
880mm £ 880mm.

Figure 3 | Optimized vortex lattices in the BEC–BCS crossover. After a
vortex lattice was created at 812 G, the field was ramped in 100ms to 792G
(BEC-side), 833G (resonance) and 853G (BCS-side), where the cloud was
held for 50ms. After 2ms of ballistic expansion, the magnetic field was
ramped to 735G for imaging (see text for details). The field of view of each
image is 880mm £ 880mm.
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Cold Fermi Atoms Introduction:

Interaction strength adjustable, range essentially zero

At infinite scattering length:
         Ground State Energy    0.25(1)
         Pairing Gap     0.50(5)
         Superfluid transition temperature   0.25(3)
         ...
are all ‘universal’ constants times Ef = kf2 / 2m

More generally functions of (kf a) x Ef



Neutron Matter Equation of State
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  Method: Diffusion (Green’s function) Monte Carlo

Fixed Node  - Variational Upper Bound

Vary parameters in nodal surfaces ~ different ‘phases’ (superfluid or 
normal)

Transient Estimation

Comparisons to Lattice Methods at Equal Populations
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Measurements and EOS at a = infinity

     

0.51 (4)      Kinast, et al., Science (2005)
0.32 (+.13,-.1)  Bartenstein, et al., PRL (2004)
0.36(15)  Bourdel, et al., PRL (2004)
0.46(5)  Partridge, et al., PRL (2004)
0.45(5)  Stewart, et al., PRL (2006)
0.41(15)  Tarruell, et al., cond-mat/0701181

Calculations:

       0.42 (2)



Radial breathing mode at Innsbruck (2007)

(high precision measurement at very low T)

MC equation of state (Astrakharchick et al.,  2005)

BCS mean field
(Hu et al., 2004)

3/10

includes LHY effect

does not include 

LHY effects

Measurement of collective frequencies

provides accurate test of equation of state !!From Stringari (ECT* 2007)

Radial modes in a trap

Data: Innsbruck 2007



Momentum Distribution

Pair Distributions

At unitarity
Very different from
Fermi Liquid

Strongly
Peaked 
Pair distribution



Superfluid (Pairing) Gap 59
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Ainsworth et al., PLB 222, 173 (1989)
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FIG. 14 The 1S0 gap in pure neutron matter predicted in several publications taking account of polarization effects. Taken
from (Lombardo and Schulze, 2001)

.

BCS

Pairing Gap (apparently) difficult to get right !
Situation now worse than shown

Dean and 
Hjorth-Jenson
RMP (2003)
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the potential, while −Emol/2 is shown for both cosh (solid line) and delta-function (dash double
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range of akF (see equations 34).

31

Pairing in Cold Atoms: gap vs. kf a

Above: comparison w/ asymptotic formulas
BCS equations -> Δ = 0.6 Ef at a = ∞

QMC calculations -> Δ = 0.5 Ef

BCS / 
Gorkov

BEC
(Molecules)



Experimental Probes of Pairing
in Cold Atoms

Polarization vs. radius
in Polarized Systems

RF response



See results by
Lobo, Recati, Giorgini,Stringari
PRL 2006

Polarization at T=0



MIT data P=0.41

radius

N↑- N↓ 

  unpolarized
  superfluid

Fully polarized
Normal state

Polarization vs. Radius : MIT data



At T = 0, assume 1st order phase transition
at a local polarization of ~45%

Calculated gap ≈  0.5 (.05) Ef

If experiments say there is no
polarization in the superfluid at T=0 :

Equilibrium (chemical potentials, pressure)
 implies gap > 0.40(.02) Ef

Very close to Sarma phase at unitarity and T=0
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MIT data (Shin et. al. 2006)

Superfluid + QP's (QMC)

Normal Phase

Superfluid +QP's (Extendend) 

FIG. 2: Fit to the MIT expt. [4]

not distinguish between the different fermion species.
Normal state at high polarization: Through QMC

studies we have determined the energetics of the normal
state at high polarization. Using a simple independent
particle model in which the interactions modify the
single particle levels we are able to fit the QMC results
rather well. A symmetric form for the dispersion relation
that fits the data is given by

E↑(k) =
k2

2m
− χ

k3
F↓

2mk̃F

(2)

E↓(k) =
k2

2m
− χ

k3
F↑

2mk̃F

(3)

where k̃F = (k6
F↑ + k6

F↓)
1/6 and χ = 0.3 .

Finite temperature effects:
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Spin-up  (Rice Data) 

Spin-down (Rice Data)

Polarization (Rice Data)
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FIG. 3: Fit to the Rice Expt. [1]
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MIT Data (P = 0.41)

Thermally 
populated 

Normal State

If we assume first order normal/superfluid 
phase transition and no superfluid 
polarization at T=0:  Δ ≥ 0.4 Ef



Is this consistent w/ RF response?
     measurement of 0.2 Ef claimed

Tune RF to specific transition: flip a minority spin to a 3rd 
(strongly-interacting) state - zero momentum transfer

Decreasing 
Polarization

Decreasing 
Temperature



    Entire Response Difficult to Calculate:
2 Simple Quantities:   Sum Rule and ‘Threshhold’

Sum Rule = <V13> - <V12>  goes to zero as a13 ⇒ a1

Threshold = BE (a13) - BE (a12) for normal

Width decreases as v13 becomes similar to v12
Sum Rule decreases also
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FIG. 2: (color online) Spatially resolved rf spectroscopy of a
trapped Fermi gas. (a) The spectral intensity I(r,∆ν) was
obtained from the reconstructed 3D profiles of the density
difference. See text for the description of the reconstruction
method. Local rf spectra are shown for (b) r = 0 µm, (c)
r = 24 µm, and (d) r = 40 µm, whose positions are marked
by vertical dashed lines in (a). Each spectrum is obtained by
spatially averaging over 2.5 µm. RTF is the radial Thomas-
Fermi radius for a noninteracting Fermi gas with the same
atom number. The spectral peak position ∆νp(r) in the local
rf spectra is marked by the black line in (a). The determi-
nation of ∆νp is limited to r < 48 µm due to the signal-to-
noise ratio. The yellow line is a parabolic fit to ∆νp(r). The
radius determined by extrapolating the fit to zero rf offset
is Rp = 53.6 µm indicated by the white down arrow. The
black up arrow indicates the radius of the trapped sample,
R = 56.6 µm, measured independently from absorption im-
ages like Fig. 1(b).

the spectral peak at h∆νp = 0.48(4)εF0 and the spec-
tral gap of h∆νg = 0.30(8)εF0. We determine a radius
Rp such that ∆νp(Rp) = 0, extrapolating the parabolic
curve fit of ∆νp to zero rf offset (Fig 2(a)). Rp = 53.6 µm
is slightly smaller than the measured radius R, which we
attribute to finite temperature effects. Previous studies
of rf spectroscopy of Fermi gases [10, 11] demonstrated
that the spectral peak shifts to higher energy at lower
temperature, which is interpreted as the increase of the
pairing gap energy. In the outer region of lower density,
the local T/TF becomes higher, consequently reducing
h∆νp/εF . The observation of Rp being close to R implies
that our experiment is very close to the zero tempera-
ture limit. From the relation T/TF (r) ∝ (1 − r2/R2)−1,
we can estimate T/TF (Rp) ≈ 15 × T/TF (0). If we as-
sume that the pairing gap energy starts emerging at
T/TF ≈ 0.6 [14], we might infer the local T/TF < 0.05 at
the center, close to our measured temperature. Although
h∆νp/εF is almost constant over the whole sample, the
line width increases in the outer region.

The homogeneous rf spectra measured in our experi-
ment allow a direct comparison with theoretical predic-
tions. However, a comprehensive theoretical interpreta-
tion of the rf spectrum of a strongly interacting Fermi gas
is not available yet and we discuss here an extrapolation
of BCS theory to strong unitarity limited interactions.
Rf spectroscopy measures a single-particle spin excita-
tion spectrum, since an rf photon changes the spin state
while imparting negligible momentum. The conventional
picture of rf spectroscopy of pairs is a photodissociation
process: the initial |1〉 − |2〉 bound state, which can be
molecules or fermion pairs, breaks into free particles in
state |1〉 and |3〉. In a BCS superfluid, the free particle
in state |1〉 is regarded as a quasiparticle, so after the
spin transition the whole system can be described as the
excited BCS state with one quasiparticle and one free
particle in state |3〉. With the assumption of no inter-
actions between state |1〉 and |3〉, the rf photon energy
offset would be h∆ν = E−k − µ + h̄2k2/2m, where the

first term E−k =
√

∆2 + (h̄2k2/2m − µ)2 is the energy
cost for generating one quasiparticle excitation with mo-
mentum −k, the second term is for removing one atom
in state |2〉, and the last term is the kinetic energy of the
atom in state |3〉 with momentum k.

The measured FWHM line width is about two times
narrower than predicted by the simple model described
above. The model spectrum shows a very long tail cor-
responding to high momentum contributions. This dis-
crepancy might be due to modification of the BCS ex-
pressions in the unitarity regime. The narrow peak might
imply that the pair wave function is narrower in momen-
tum space and therefore more spatially extended than
the BCS prediction. Another extension of our simple
model should address the interactions between atoms in
state |1〉 and |3〉. The mean-field interaction energies due

MIT data, 2007



Neutron Matter
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Results at a*k
F
 = -10, for 66 particles

Momentum 
distribution:

momentum distribution
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Results at a*k
F
 = -10, for 66 particles

Pair distribution functions:

pair distributions

Qualitatively similar to cold atoms

a kf = 10 or kf ≈ 0.54 fm-1

carefully studied size dependence
from A = 22 to 90
compared to BCS 
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Motivation: Pairing Gap

At non-infinitesimal densities: gap not well-known

(U. Lombardo, H.-J. Schulze, LNP 578, 30 (2001).) (A. Sedrakian, and J.W. Clark, nucl-th/0607028).)curves from Sedrakian and Clark: nucl/th-0607028

Schmidt, Fantoni calculation

LANL: Gap 0.22 Ef [1.35(15)] MeV
                        at kf a = -10 

GFMC compared other Results



Conclusions / Future Directions

 

Experimental probes of pairing gap in cold atoms important
 to constrain quantum many-body theories.

Gap at unitarity in cold atoms approximately 0.5 Ef

Neutron matter gap significantly larger than typical calculations,
          but smaller than BCS theory or cold atoms (finite range)

Experiment:
        Experiments which measure both n, n↑ - n↓ vs. r
        for different Geometries, Polarizations and Temperatures

Theory
        Calculations in different geometries (inhomogeneous, ...)
        More accurate calculations of Gap, dispersion, RF response
        Calculations of different possible phases


