Crustal cooling in accretion heated neutron stars

Ed Cackett
ecackett@umich.edu
University of Michigan

Collaborators: Rudy Wijnands, Jon Miller, Jeroen Homan, Walter Lewin, Manuel Linares

Outline

- X-ray transients
- Accretion heated neutron stars
- Observing NS crusts cooling
- What next?
- To answer Bob: we can measure the thermal relaxation time of the crust (we think!)

X-ray Binaries

Low-mass X-ray binary (LMXB):
donor ~ I M⊙

The variable X-ray sky

Why are X-ray binaries transient?

- Majority of the time spent in quiescence little or no accretion
- Matter builds up in outer disk
- Thermal instability triggers rapid accretion
 - outburst

see e.g., Lasota (2001)

Transients

- Increase by 10^3 10^4 in luminosity
- Outbursts last typically weeks months
- Recurrence timescale typically years decades

Outburst Quiescence

EXO 1745-248 in Terzan 5

Time

Wijnands et al. 2005

Some transient lightcurves...

Time (days)

Data from RXTE ASM Team

Why look at quiescent neutron stars?

- Outburst luminosity 10³⁶ 10³⁸ erg s⁻¹
 - dominated by X-rays from accretion disk
- Quiescent luminosity < 10³⁴ erg s⁻¹
 - mostly thermal X-rays NS
- But, NS in LMXBs are old
 - → why is it still hot?

Deep crustal heating

Brown, Bildsten & Rutledge (1998)

- Energy deposited during outburst
- Freshly accreted
 material compresses
 inner crust (~300 m
 deep)
- Trigger nuclear reactions
- Repeated outbursts heat core (over 10⁴ yr)
- Get to a steady-state

 Quiescent luminosity set by time-averaged accretion rate

Deep crustal heating continued.....

Quiescent Luminosity

Time-averaged mass accretion rate

$$L_q = 8.7 \times 10^{33} \left(\frac{\langle \dot{M} \rangle}{10^{-10} \ M_{\odot} \ \text{yr}^{-1}} \right) \frac{Q}{1.45 \ \text{MeV}} \text{ ergs s}^{-1}$$

Heat deposited in crust per accreted nucleon

Learning about NS interior

- Quiescent luminosity depends on level of neutrino emission
- Measure the quiescent fluxes (luminosities) of as many NS as possible
- Put them all together can learn something about NS cooling.....leave for Craig Heinke

Observing neutron stars in quiescence

- Dominated by thermal emission (generally!)
- Blackbody: Flux \propto (Radius/Distance)²
- But blackbody fits give too small a radius (e.g. Rutledge et al. 1999)
- Need to use atmosphere spectra (e.g. Zavlin et al. 1996)
- Simpler than in isolated neutron stars:
- H dominant, and low B

Neutron star atmosphere spectrum

NSA model: Zavlin et al. (1996)

Neutron star atmosphere spectrum

- Example: fitting
 B-body to NSA
 R = 1.7 km
 T = 2x10⁶ K
- Temperature: too high
- Radius: too small

NSA model: Zavlin et al. (1996)

Transients with extra-long outbursts

Data from RXTE ASM Team

KS 1731-260

- 12.5 year outburst, no other outbursts seen
- Source goes into quiescence in Jan 2001 (Wijnands et al. 2001)
- Rutledge et al. (2002) predict crust will be heated significantly out of thermal equilibrium with interior, and should cool

Rutledge et al. 2002

KS 1731-260: did it cool?

KS 1731-260: observations

5 Chandra

2 XMM-Newton

Cooling crust of KS 1731-260

- Require exponential that levels off to a non-zero value
 - returning to thermal equilibrium with core
- e-folding time:
 - → 325 ± 101 d for temperature

← ~ 4 yr →

Cackett et al. 2006

MXB 1659-29

- First detected in 1976
- Turned off in 1979, and remained in quiescence for 21 year
- Then, 2.5 year outburst
- Returned to quiescence in Sept. 2001

MXB 1659-29 in quiescence

 As in KS 1731: crust heated out of thermal equilbirium with core, and cools once in quiescence

Cooling crust of MXB 1659-29

- Again, require exponential to level off
- e-folding time:
 - ▶ 505 ± 59 d for Temp
- e-folding times different:
 - ► KS 1731-260 cools faster by a factor ~1.6

Cackett et al. 2006

Crustal cooling

- So, in both objects we've seen the crust cool (apparently to thermal equilibrium with core)
- We can measure the thermal relaxation time
- But what does it tell us about the crust?

What's this tell us about the crust?

Curves from Rutledge et al. (2002)

- In the Rutledge et al. models, implies crusts have high thermal conductivity
- KS 1731 cools quicker by a factor of 1.6 - why?
 - Different compositions?
 - Different crust thickness?

Timescale vs. crust thickness

- Higher mass (surface gravity), thinner crust, faster cooling
- KS 1731 would need to be ~25% more massive

Points: numerical results assuming Haensel & Zdunik (1990) composition

Dotted line: Lattimer et al. 1994 scaling

Is the thermal relaxation time model independent?

- We recover the same timescales if using a blackbody model
- Or, just using raw
 Chandra count rates
- Timescale, and observed trend is robust

KS 1731-260

Further observational issues

• Is the spectrum purely thermal?

 Has it really stopped cooling - what will happen next?

Is the spectrum just thermal?

- Some quiescent
 neutron stars require
 power-law
 components (e.g.
 Cen X-4) in addition
 to the thermal
 component
- Not needed in KS
 1731-260 and MXB
 1659-29, but what about the faintest observations.....can't tell!

Cen X-4: PL about 50% of 0.5-10 keV flux

Is the spectrum really thermal?

- Power-law
 component becomes
 more prominent as
 sources fade
- Need deeper observations of these sources to tell the significance

Jonker et al. 2004

What will happen next?

- Possibilities:
- Steady flux great news, everything ok!
- Continued cooling what's going on?
- Variability around steady flux - residual accretion important

What do we need to do?

Observationally:

- Continued observations of KS 1731-260 and MXB 1659-29
- Monitoring of the next quasi-persistent source to go into quiescence

Theoretically:

- Can crust models explain these timescales?
- Why are the timescales different?

Other possible sources

- Want:
 - → Long outburst(> 2ish years)
 - ideally lowhydrogencolumn density

Data from RXTE/ASM team

HETE J 1900.1-2455

- Recently discovered accretion-powered millisecond X-ray pulsar (Kaaret et al. 2006)
- Accreting for ~2 years
- Looked like it was turning off......
-but bounced back up again

Data from RXTE/
ASM team

And finally: the next generation: Constellation-X

- NS radii: currently accurate to a few km at best
- Hard to get enough photons from most sources!
- With Con-X radius will be limited by accuracy of distance measurement and models

Credit: NASA

Chandra Constellation-X Con-X Chandra MXB 1659-29, 25 ks 25 ks Normalized counts s⁻¹ keV⁻¹ Normalized counts s-1 keV-1 0.01 10-3 0.5 0.5 Energy (keV) Energy (keV) Radius (km) 1.2 1.2 1.6 1.6 Mass (M_☉) Mass (M_☉)

The one thing to take away:

Quasi-persistent sources provide a rare opportunity to observe crustal cooling......and we think we've measured the thermal relaxation time of the crust in 2 sources.