Crust electron captures

Edward Brown

KS 1731–260

In this talk

- Review of deep crustal heating
- Connection to "surface" phenomena
- Electron captures in the outer crust with realistic nuclear physics
- Thermal conductivity & cooling timescales
- Next steps

Crust thermal profile

Luminosity

The heating sets

- the quiescent luminosity of transients (previous talks)
- ignition depth of superbursts (Brown, Cooper & Narayan, Cumming et al.)
- X-ray bursts at low accretion rates (Cumming et al., Peng et al.)

The composition sets

- transport properties
- mass quadrupole (Bildsten 1998, Ushomirsky et al. 2000, Haskell et al. 2006)

KS 1731–260 superburst (Kuulkers 2002)

Superburst ignition wants a hot crust (Brown 2004, Cooper & Narayan 2005, Cumming et al. 2006)

FIG. 5.— Fitted lightcurve for KS 1731-260, assuming the distance given in Table 1. Solid data points are included in the fit, open data points (with fluxes less than 0.1 of the peak flux) are not included.

Plots from Cumming et al. 2006

¹S₀ Critical temperatures for n-matter

For $T < T_{crit}$, formation & breaking of Cooper pairs emits neutrinos more efficiently than modified Urca

$$D\varepsilon_{\nu} \approx 10^{22} f(T/T_{\rm crit}) T_{\rm GK}^7 \,{\rm ergs}\,{\rm cm}^{-3}{\rm s}^{-1}$$

Compilation from Page et al. 2004

Neutrino emissivity in the crust

Gupta, Brown, Schatz, Möller, & Kratz (2007)

Composition set by rising Fermi energy

Consider the symmetry term in the mass fmla.,

$$\frac{E}{A} = \dots + E_s \left(\frac{N-Z}{N+Z}\right)^2 = \dots + E_s (1-2Y_e)^2.$$

The electron Gibbs energy, per nucleon is

$$\frac{1}{n_b}(E+PV) = Y_e \mu_e$$

and minimizing the total energy with respect to Y_e gives

$$Y_e \approx \frac{1}{2} - \frac{\mu_e}{8E_s}.$$

NB. This fmla. also follows from $\mu_{\rm e} = \mu_{\rm n} - \mu_{\rm p}$

 $A_{\rm Z}$

 $A_{\rm Z}$

 $A_{\rm Z}$

With captures into excited states

Path to neutron drip

Electron capture reactions, outer crust

Composition matters!

Total heat deposited into outer crust

Ignition column

Ignition column—Cooper pairing suppressed

With superburst ashes (dissociation of rp-process material)

An Amorphous Crust

- Crust unlikely to be a pure lattice
 - Different phases of nuclear matter may coexist in inner crust (Magierski & Heenan 2002)
 - Fluctuations in composition during cooling from birth (Jones 2004)
 - Distribution of isotopes from burning of H, He
- Estimate relaxation time by setting structure factor to unity (as for a liquid)

$$au_{
m amp}^{-1} pprox rac{4\pi e^4}{p_{
m F}^2 v_{
m F}}
ho N_{
m A} \Lambda \langle Z^2
angle$$

- Cf. estimate of Jones (2004, *PRL*)
- Neglects phonon transport, transport by superfluid protons
 - May be important in the inner crust

Horowitz, Berry, & Brown 2007

Crust cooling observed!

Impact of thermal conductivity

Important! What is the thermal conductivity of pasta?

Compare with cooling timescale

Brown, Degenaar, Steiner, in preparation; cf. Lattimer et al. 1994

1H 1905+000

The \$3,000,000 photon!

From a 300 ks *Chandra* observation (Jonker, Steeghs, Chakrabarty, et al. in prep.), 95% confidence upper limit:

$$L_{\rm X} < 2 \times 10^{30} \,{\rm ergs \, s^{-1}} \left(\frac{d}{10 \,{\rm kpc}}\right)^2$$

with

$$T_{\rm eff}^{\infty} < 3.6 \times 10^5 {\rm K}$$

What does this say about enhanced neutrino cooling? What is different about this binary? Is the telescope pointed at the right place?

Interior temperature, 1H 1905+000

Evolution of *dM/dt*

Deloye & Bildsten 2003

Core temperature evolution

Evolution of core temperature

The heating is described by

$$C(T)\frac{dT}{dt} = Q\frac{\dot{M}}{m_{\rm u}},$$

and the cooling by

$$C(T)\frac{dT}{dt} = -\tilde{L}T^{\alpha}$$

with $\alpha \approx 2.2$. Defining the cooling timescale of the core as

$$\tau \equiv \frac{E_{\text{core}}}{L_{\gamma}} = \frac{1}{2} \tilde{C} T_{\text{end}}^2 (\tilde{L} T_{\text{end}}^{\alpha})^{-1},$$

and the temperature at the end of the outburst is

$$T_{\rm end}^2 = \left(2\frac{\Delta M}{m_{\rm u}}\frac{Q}{\tilde{C}}\right) \left[1 - \left(1 + \frac{\alpha - 2}{2}\frac{t_{\rm recur}}{\tau}\right)^{-2/(\alpha - 2)}\right]^{-1}$$

Core temperatures following end of 15 yr outburst

Summary

- Observations of thermal relaxation of neutron star crusts
 - Cooling timescale sensitive to NS mass, crust composition
 - Suggestion of high thermal conductivity—at odds with superburst ignition?
- First calculation of heating in the outer crust with realistic nuclear physics
 - Potentially much more heating than previously predicted
 - Amount of heating depends strongly on composition
 - Ignition of superbursts, long X-ray bursts (Cumming et al. 2006, Peng et al. 2007)
- Calculations still overpredict the ignition depth of superbursts? Does this imply another source of heating?

Future work

- Reactions in the inner crust
 - Pathway to equilibrium nuclei (Jones 2005)?
 - Composition
 - Heating
- Applications to quasi-persistent transients (Cackett's talk)

The Bob Questions

- Nuclear physics
 - Transport properties: what is the thermal conductivity of pasta (and sauce)—are there reasonable upper & lower limits?
 - Better understanding of the transition between crust & core
- Astrophyscs
 - Larger sample of superbursts & bursts at low accretion rates
 - Synthesis of disparate observations: isolated cooling neutron stars, magnetars, X-ray bursters, & X-ray transients share the same nuclear physics.