Nuclear Schiff Moment Calculations

João H. de Jesus

University of Wisconsin-Madison

INT Workshop on EDMs and CP Violation Seattle, March 19-23, 2007

5900

Introduction

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra
- ConclusionsOverview

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra
- ConclusionsOverview

Q (A

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra

ConclusionsOverview

nga

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra

Conclusions

Overview

Ma A

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ **CP-violation**.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - ⁽²⁰⁰¹⁾ B-meson system (2001)
 - XCObserved matter anti-matter asymmetry in the Universe.
 - CP-violation in the strong sector : θ_{OCD} very small.

Atomic EDMs can help !

P

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ CP-violation.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - / Kaon system (1964)
 - B-meson system (2001)
 - X: Observed matter anti-matter asymmetry in the Universe.
 - CP-violation in the strong sector : 0_{CD} very small.

Atomic EDMs can help !

90

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ CP-violation.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - / Kaon system (1964)
 - / B-meson system (2001)
 - X Observed matter anti-matter asymmetry in the Universe
 - ? CP-violation in the strong sector : θ_{QCD} very small

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ CP-violation.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - ✓ Kaon system (1964)
 - / B-meson system (2001)
 - X Observed matter anti-matter asymmetry in the Universe
 - ? CP-violation in the strong sector : θ_{QCD} very small

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ CP-violation.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - $\sqrt{}$ Kaon system (1964)
 - ✓ B-meson system (2001)

X Observed matter anti-matter asymmetry in the Universe ? CP-violation in the strong sector : θ_{OCD} very small

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ CP-violation.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - Kaon system (1964)
 - ✓ B-meson system (2001)
 - X Observed matter anti-matter asymmetry in the Universe
 - ? CP-violation in the strong sector : θ_{QCD} very small

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ CP-violation.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - Kaon system (1964)
 - ✓ B-meson system (2001)
 - X Observed matter anti-matter asymmetry in the Universe
 - ? CP-violation in the strong sector : θ_{QCD} very small

- Permanent Electric Dipole Moments (EDMs) are a signal of time(T)-reversal-violating physics.
- If CPT is a good symmetry, **T-violation** ⇔ CP-violation.
- The Standard Model accommodates some level of CP-violation in weak interactions.
 - Kaon system (1964)
 - ✓ B-meson system (2001)
 - X Observed matter anti-matter asymmetry in the Universe
 - ? CP-violation in the strong sector : θ_{QCD} very small

Experimental searches : $|d_{_{199}Hg}^{exp}| < 2.1 \times 10^{-28} \ e \ {\rm cm}$

Standard Model prediction : $d_{
m ^{199}Hg} \sim 10^{-33}~e~{
m cm}$

How can this limit constrain SUSY and other extra-SM theories that predict much higher EDMs than the SM ?

Experimental searches : $|d_{_{199}Hg}^{exp}| < 2.1 \times 10^{-28} \ e \ {\rm cm}$

Standard Model prediction : $d_{\rm ^{199}Hg} \sim 10^{-33} \ e \ \rm cm$

How can this limit constrain SUSY and other extra-SM theories that predict much higher EDMs than the SM ?

Experimental searches : $|d_{_{199}Hg}^{exp}| < 2.1 \times 10^{-28} e \text{ cm}$

Standard Model prediction : $d_{\rm ^{199}Hg} \sim 10^{-33}~e~{\rm cm}$

Sac

How can this limit constrain SUSY and other extra-SM theories that predict much higher EDMs than the SM ?

When connecting atomic EDMs with underlying T-odd physics largest uncertainty is in nuclear physics.

From fundamental physics to atomic EDMs

T-violation in fundamental theory induces a π NN T-odd vertex. This gives rise to a T-odd NN interaction, which induces a nuclear EDM.

5990

The atomic EDM is induced by a nuclear EDM... Not quite !... Electrons shield applied electric fields... The relevant quantity is the Schiff operator

< 口 > < 同 / 同 /

프 - - 프 -

From fundamental physics to atomic EDMs

T-violation in fundamental theory induces a π NN T-odd vertex. This gives rise to a T-odd NN interaction, which induces a nuclear EDM.

5990

→ Ξ →

The atomic EDM is induced by a nuclear EDM... Not quite !... Electrons shield applied electric fields... The relevant quantity is the Schiff operator

< ロ > < 同

From fundamental physics to atomic EDMs

T-violation in fundamental theory induces a π NN T-odd vertex. This gives rise to a T-odd NN interaction, which induces a nuclear EDM.

5990

∃ >

The atomic EDM is induced by a nuclear EDM... Not quite !... Electrons shield applied electric fields... The relevant quantity is the Schiff operator

$$ec{S}\sim\sum_{
ho=1}^{Z}\left(r_{
ho}^{2}ec{r}_{
ho}-rac{5}{3}\langle r_{
m ch}^{2}
ight)ec{r}_{
ho}
ight)$$

< <p>I I

From fundamental physics to atomic EDMs

T-violation in fundamental theory induces a π NN T-odd vertex. This gives rise to a T-odd NN interaction, which induces a nuclear EDM.

5990

아 주 물다

The atomic EDM is induced by a nuclear EDM... Not quite !... Electrons shield applied electric fields... The relevant quantity is the Schiff operator

From fundamental physics to atomic EDMs

T-violation in fundamental theory induces a π NN T-odd vertex. This gives rise to a T-odd NN interaction, which induces a nuclear EDM.

5990

∃ >

The atomic EDM is induced by a nuclear EDM... Not quite !... Electrons shield applied electric fields... The relevant quantity is the Schiff operator

$$ec{\mathsf{S}}\sim\sum_{p=1}^{Z}\left(r_{p}^{2}ec{r}_{p}-rac{5}{3}\langle r_{\mathrm{ch}}^{2}
angle ec{r}_{p}
ight)$$

- 2 Spherical nuclei
 - Nuclear physics input
 - Schiff-related observables in ²⁰⁸Pb
 - The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- 3 Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra
- ConclusionsOverview

Ma A

Introduction Spherical Octupole Conclusions

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{E_0 - E_i} + \text{c.c.}$$

Input

²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

- How well do we know $\langle \Psi_0 | S_z | \Psi_i \rangle$ and $\langle \Psi_0 | W_{PT} | \Psi_i \rangle$?
- |Ψ₀⟩ and |Ψ_i⟩ are the ground and excited states of the odd-A system... not an easy task to obtain them.
- $|\Psi_0\rangle \equiv |\Psi_0\rangle_{\text{odd}-A} = a_{\nu}^{\mathsf{T}}|\Psi_0\rangle_{\text{even}-A};$ it has the quantum-numbers of the valence particle because $|\Psi_0\rangle_{\text{even}-A}$ has $J^{\pi} = 0^+$.
- S_z acts only on protons; in ¹²⁹Xe and ¹⁹⁹Hg the valence neutron is a *spectator*; in a crude approximation, we can study $\langle \Psi_0 | S_z | \Psi_i \rangle_{odd} \rightarrow \langle \Psi_0 | S_z | \Psi_i \rangle_{even}$.

Introduction Spherical Octupole Conclusions

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{\text{PT}} | \Psi_0 \rangle}{E_0 - E_i} + \text{c.c.}$$

Input

²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

- How well do we know $\langle \Psi_0 | S_z | \Psi_i \rangle$ and $\langle \Psi_0 | W_{PT} | \Psi_i \rangle$?
- |Ψ₀⟩ and |Ψ_i⟩ are the ground and excited states of the odd-A system... not an easy task to obtain them.
- $|\Psi_0\rangle \equiv |\Psi_0\rangle_{\text{odd}-A} = a_{\nu}^{\dagger}|\Psi_0\rangle_{\text{even}-A};$ it has the quantum-numbers of the valence particle because $|\Psi_0\rangle_{\text{even}-A}$ has $J^{\pi} = 0^+$.
- S_z acts only on protons; in ¹²⁹Xe and ¹⁹⁹Hg the valence neutron is a *spectator*; in a crude approximation, we can study $\langle \Psi_0 | S_z | \Psi_i \rangle_{odd} \rightarrow \langle \Psi_0 | S_z | \Psi_i \rangle_{even}$.

Spherical Octupole Conclusions

Introduction

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{\text{PT}} | \Psi_0 \rangle}{E_0 - E_i} + \text{c.c.}$$

Input

²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

- How well do we know $\langle \Psi_0 | S_z | \Psi_i \rangle$ and $\langle \Psi_0 | W_{PT} | \Psi_i \rangle$?
- |Ψ₀⟩ and |Ψ_i⟩ are the ground and excited states of the odd-A system... not an easy task to obtain them.
- $|\Psi_0\rangle \equiv |\Psi_0\rangle_{\text{odd}-A} = a_{\nu}^{\top}|\Psi_0\rangle_{\text{even}-A};$ it has the quantum-numbers of the valence particle because $|\Psi_0\rangle_{\text{even}-A}$ has $J^{\pi} = 0^+$.
- S_z acts only on protons; in ¹²⁹Xe and ¹⁹⁹Hg the valence neutron is a *spectator*, in a crude approximation, we can study $\langle \Psi_0 | S_z | \Psi_i \rangle_{odd} \rightarrow \langle \Psi_0 | S_z | \Psi_i \rangle_{even}$.

Introduction

Spherical Octupole Conclusions

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{\text{PT}} | \Psi_0 \rangle}{E_0 - E_i} + \text{c.c.}$$

Input

²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

- How well do we know $\langle \Psi_0 | S_z | \Psi_i \rangle$ and $\langle \Psi_0 | W_{PT} | \Psi_i \rangle$?
- |Ψ₀⟩ and |Ψ_i⟩ are the ground and excited states of the odd-A system... not an easy task to obtain them.
- $|\Psi_0\rangle \equiv |\Psi_0\rangle_{\text{odd}-A} = a_{\nu}^{\dagger}|\Psi_0\rangle_{\text{even}-A};$ it has the quantum-numbers of the valence particle because $|\Psi_0\rangle_{\text{even}-A}$ has $J^{\pi} = 0^+$.
- S_z acts only on protons; in ¹²⁹Xe and ¹⁹⁹Hg the valence neutron is a *spectator*, in a crude approximation, we can study $\langle \Psi_0 | S_z | \Psi_i \rangle_{odd} \rightarrow \langle \Psi_0 | S_z | \Psi_i \rangle_{even}$.

Ma A

Introduction

Spherical Octupole Conclusions

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{\text{PT}} | \Psi_0 \rangle}{E_0 - E_i} + \text{c.c.}$$

Input

²⁰⁸Ph ¹²⁹Xe and ¹⁹⁹Ho

- How well do we know $\langle \Psi_0 | S_z | \Psi_i \rangle$ and $\langle \Psi_0 | W_{PT} | \Psi_i \rangle$?
- |Ψ₀⟩ and |Ψ_i⟩ are the ground and excited states of the odd-A system... not an easy task to obtain them.
- $|\Psi_0\rangle \equiv |\Psi_0\rangle_{\text{odd}-A} = a_v^{\dagger}|\Psi_0\rangle_{\text{even}-A};$ it has the quantum-numbers of the valence particle because $|\Psi_0\rangle_{\text{even}-A}$ has $J^{\pi} = 0^+$.
- S_z acts only on protons; in ¹²⁹Xe and ¹⁹⁹Hg the valence neutron is a *spectator*, in a crude approximation, we can study $\langle \Psi_0 | S_z | \Psi_i \rangle_{odd} \rightarrow \langle \Psi_0 | S_z | \Psi_i \rangle_{even}$.

A Q P

Ma A

Outline

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Ha
- - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra
- Overview

Input

Schiff-related observables in ²⁰⁸Pb

24 **Isovector E-1** 20 strength distribution Strength (fm²/MeV) 8 7 91 91 E_x=80/A^{1/3} $\vec{S} \sim \sum_{p=1}^{Z} \left(r_p^2 \vec{r}_p - \eta \vec{r}_p \right)$ 4 HF (SkM*) 0 12 20 24 0 4 8 16 28 Energy (MeV) -X X-< D

5990

Input

Schiff-related observables in ²⁰⁸Pb

João H. de Jesus Nuclear Schiff Moment Calculations

Input

Schiff-related observables in ²⁰⁸Pb

João H. de Jesus Nuclear Schiff Moment Calculations

Input

Schiff-related observables in ²⁰⁸Pb

João H. de Jesus Nuclear Schiff Moment Calculations

Introduction

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra
- ConclusionsOverview

Ma A

Introduction Spherical Octupole Conclusions Input ²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg

- ¹²⁹Xe and ¹⁹⁹Hg are one-neutron valence nuclei;
- Ground state is $q_v^{\dagger} | BCS \rangle$;
- Quasi-particle excited states;

5900

Skyrme NN interactions;

Introduction Spherical Octupole Conclusions Input ²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg

- ¹²⁹Xe and ¹⁹⁹Hg are one-neutron valence nuclei;
- Ground state is $q_v^{\dagger} |BCS\rangle$;
- Quasi-particle excited states;

5900

Skyrme NN interactions;

- ¹²⁹Xe and ¹⁹⁹Hg are one-neutron valence nuclei;
- Ground state is $q_{\nu}^{\dagger} |\text{BCS}\rangle$;
- Quasi-particle excited states;

5990

Skyrme NN interactions;

- ¹²⁹Xe and ¹⁹⁹Hg are one-neutron valence nuclei;
- Ground state is $q_{\nu}^{\dagger} |\text{BCS}\rangle$;
- Quasi-particle excited states;

5990

• Skyrme NN interactions;

- ¹²⁹Xe and ¹⁹⁹Hg are one-neutron valence nuclei;
- Ground state is $q_{\nu}^{\dagger} |BCS\rangle$;
- Quasi-particle excited states;

5900

• Skyrme NN interactions;

Nuclear collective effects;

- ¹²⁹Xe and ¹⁹⁹Hg are one-neutron valence nuclei;
- Ground state is $q_{\nu}^{\dagger} |BCS\rangle$;
- Quasi-particle excited states;
- Skyrme NN interactions;

- Nuclear collective effects;
- Higher order diagrams;

- ¹²⁹Xe and ¹⁹⁹Hg are one-neutron valence nuclei;
- Ground state is $q_{\nu}^{\dagger} |\text{BCS}\rangle$;
- Quasi-particle excited states;
- Skyrme NN interactions;

- Nuclear collective effects;
- Higher order diagrams;
- Sensitivity to different Skyrme interactions.

Introduction Spherical Octupole Conclusions Input ²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg

$S [e \text{ fm}^3] = 0.095 g \overline{g}_0 + 0.095 g \overline{g}_1 + 0.190 g \overline{g}_2$

 $S [e \text{ fm}^3] = 0.018 g\overline{g}_0 + 0.034 g\overline{g}_1 + 0.031 g\overline{g}_2$ $S [e \text{ fm}^3] = 0.010 g\overline{g}_0 + 0.074 g\overline{g}_1 + 0.018 g\overline{g}_2$

DQC

The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg

Input

Introduction Spherical Octupole Conclusions

v

²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

João H. de Jesus Nuclear Schiff Moment Calculations

Introduction Spherical Octupole Conclusions Input ²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg

João H. de Jesus Nuclear Schiff Moment Calculations

Introduction Spherical Octupole Conclusions Input ²⁰⁸Pb ¹²⁹Xe and ¹⁹⁹Hg

The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg

< u > < 🗗

5990

troduction Spherical Octupole Conclusions	Input ²⁰⁸ F	¹²⁹ Xe and ¹	⁹⁹ Hg
nuclear Schiff momen	ts of 12	⁹ Xe an	d ¹⁹⁹ Hg
ummary			
Nuclei	a ₀	a ₁	a ₂
JHJ and Engel = PR Dmitriev et al. = PR	C 72 , 045 C 71 , 035	503 (200 501 (2005	5) 5)
	Nucloar Sel] → < = → < =

João H. de Jesus Nuclear Schiff Moment Calculations

João H. de Jesus Nuclear Schiff Moment Calculations

I	Introduction Spherical Octupole Conclusions Input ²⁰⁸ Pb ¹²⁹ Xe and ¹⁹⁹ Hg					
The	e nuclear Schiff momer	nts of ¹²	⁹ Xe an	d ¹⁹⁹ Hg		
S	Gummary					
	Nuclei	a ₀	a ₁	a ₂		
	¹⁹⁹ Hg (JHJ and Engel)	0.010	0.074	0.018		
	¹⁹⁹ Hg (Dmitriev <i>et al.</i>)	0.0004	0.055	0.009		
	¹²⁹ Xe (to be published)	-0.002	-0.034	-0.007		
	¹²⁹ Xe (Dmitriev <i>et al.</i>)	-0.008	-0.006	-0.009		
	JHJ and Engel = PI Dmitriev et al. = PF	RC 72 , 045 RC 71 , 035	503 (2005 501 (2005	5) 5)		
			< □ > < ₫	₽ ► < ≡ ► < ≡ ►	≣	

Outline

1 Introduction

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra
- ConclusionsOverview

Ma A

Enhancement 225 Ra

Octupole enhancement

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{(E_0 - E_i)} + c.c.$$

 Asymmetric shape of octupole-deformed nuclei implies parity doubling.

• In spherical nuclei, $(E_0 - E_i) \sim \text{MeV}$.

 In octupole-deformed nuclei, very low-energy state above the ground state, with opposite parity.

ln ²²⁵Ra, $(E_0 - E_1) = 55.3$ keV

An enhancement factor of up to 100 is expected! More, in fact...

5990

225 Ra

Octupole enhancement

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{(E_0 - E_i)} + c.c.$$

- Asymmetric shape of octupole-deformed nuclei implies parity doubling.
- In spherical nuclei, $(E_0 E_i) \sim \text{MeV}$.
- In octupole-deformed nuclei, very low-energy state above the ground state, with opposite parity.

\ln^{225} Ra, $(E_0 - E_1) = 55.3$ keV

An enhancement factor of up to 100 is expected! More, in fact...

João H. de Jesus Nuclear Schiff Moment Calculations

225 Ra

Octupole enhancement

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{(E_0 - E_i)} + c.c.$$

 Asymmetric shape of octupole-deformed nuclei implies parity doubling.

• In spherical nuclei, $(E_0 - E_i) \sim \text{MeV}$.

In octupole-deformed nuclei, very low-energy state above the ground state, with opposite parity.

\ln^{225} Ra, $(E_0 - E_1) = 55.3$ keV

An enhancement factor of up to 100 is expected! More, in fact...

João H. de Jesus Nuclear Schiff Moment Calculations

225 Ra

Octupole enhancement

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{(E_0 - E_i)} + c.c.$$

 Asymmetric shape of octupole-deformed nuclei implies parity doubling.

• In spherical nuclei, $(E_0 - E_i) \sim \text{MeV}$.

 In octupole-deformed nuclei, very low-energy state above the ground state, with opposite parity.

\ln^{225} Ra, $(E_0 - E_1) = 55.3$ keV

An enhancement factor of up to 100 is expected! More, in fact...

225 Ra

Octupole enhancement

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{(E_0 - E_i)} + c.c.$$

 Asymmetric shape of octupole-deformed nuclei implies parity doubling.

• In spherical nuclei, $(E_0 - E_i) \sim \text{MeV}$.

 In octupole-deformed nuclei, very low-energy state above the ground state, with opposite parity.

$\ln {}^{225}\text{Ra}, (E_0 - E_1) = 55.3 \text{ keV}$

An enhancement factor of up to 100 is expected! More, in fact...

225 Ra

Octupole enhancement

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{(E_0 - E_i)} + c.c.$$

 Asymmetric shape of octupole-deformed nuclei implies parity doubling.

• In spherical nuclei, $(E_0 - E_i) \sim \text{MeV}$.

 In octupole-deformed nuclei, very low-energy state above the ground state, with opposite parity.

 $\ln {}^{225}\text{Ra}, (E_0 - E_1) = 55.3 \text{ keV}$

An enhancement factor of up to 100 is expected!

More, in fact...

225 Ra

Octupole enhancement

$$S \equiv \langle \Psi_0 | S_z | \Psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \Psi_0 | S_z | \Psi_i \rangle \langle \Psi_i | W_{PT} | \Psi_0 \rangle}{(E_0 - E_i)} + c.c.$$

 Asymmetric shape of octupole-deformed nuclei implies parity doubling.

• In spherical nuclei, $(E_0 - E_i) \sim \text{MeV}$.

 In octupole-deformed nuclei, very low-energy state above the ground state, with opposite parity.

 $\ln {}^{225}\text{Ra}, (E_0 - E_1) = 55.3 \text{ keV}$

An enhancement factor of up to 100 is expected! More, in fact...

225 Ra

Octupole enhancement

- Asymmetric shape of octupole-deformed nuclei implies parity doubling.
- $|\Psi_0\rangle$ and $|\Psi_1\rangle$ are projections onto good parity and angular momentum of the same "intrinsic state".

• One can write $S \sim \langle S_z \rangle_{intr} \langle W_{PT} \rangle_{intr} / \Delta E$.

The intrinsic-state expectation value $\langle S_z \rangle_{intr}$ is **larger** than a typical matrix element in a spherical nucleus.

The expected enhancement factor is larger than 100

225 Ra

Octupole enhancement

$$S\simeq \frac{\langle \Psi_0|S_z|\Psi_1\rangle \langle \Psi_1|W_{\rm PT}|\Psi_0\rangle}{({\cal E}_0-{\cal E}_1)}+{\rm c.c.}$$

- Asymmetric shape of octupole-deformed nuclei implies parity doubling.
- |Ψ₀⟩ and |Ψ₁⟩ are projections onto good parity and angular momentum of the same "intrinsic state".

• One can write $S \sim \langle S_z \rangle_{intr} \langle W_{PT} \rangle_{intr} / \Delta E$.

The intrinsic-state expectation value $\langle S_z \rangle_{intr}$ is **larger** than a typical matrix element in a spherical nucleus.

The expected enhancement factor is larger than 100

225 Ra

Octupole enhancement

$$S \simeq rac{\langle \Psi_0 | S_z | \Psi_1
angle \langle \Psi_1 | W_{ ext{PT}} | \Psi_0
angle}{(E_0 - E_1)} + ext{c.c.}$$

- Asymmetric shape of octupole-deformed nuclei implies parity doubling.
- |Ψ₀⟩ and |Ψ₁⟩ are projections onto good parity and angular momentum of the same "intrinsic state".

• One can write $S \sim \langle S_z \rangle_{intr} \langle W_{PT} \rangle_{intr} / \Delta E$.

The intrinsic-state expectation value $\langle S_z \rangle_{intr}$ is **larger** than a typical matrix element in a spherical nucleus.

The expected enhancement factor is larger than 100!

225 Ra

Octupole enhancement

$$S \simeq rac{\langle \Psi_0 | S_z | \Psi_1
angle \langle \Psi_1 | W_{ ext{PT}} | \Psi_0
angle}{(E_0 - E_1)} + ext{c.c.}$$

- Asymmetric shape of octupole-deformed nuclei implies parity doubling.
- |Ψ₀⟩ and |Ψ₁⟩ are projections onto good parity and angular momentum of the same "intrinsic state".

• One can write $S \sim \langle S_z \rangle_{intr} \langle W_{PT} \rangle_{intr} / \Delta E$.

The intrinsic-state expectation value $\langle S_z \rangle_{intr}$ is **larger** than a typical matrix element in a spherical nucleus.

The expected enhancement factor is larger than <u>1</u>00!

225 Ra

Octupole enhancement

$$S\simeq \frac{\langle \Psi_0|S_z|\Psi_1\rangle \langle \Psi_1|W_{\rm PT}|\Psi_0\rangle}{({\cal E}_0-{\cal E}_1)}+{\rm c.c.}$$

- Asymmetric shape of octupole-deformed nuclei implies parity doubling.
- |Ψ₀⟩ and |Ψ₁⟩ are projections onto good parity and angular momentum of the same "intrinsic state".

• One can write $S \sim \langle S_z \rangle_{intr} \langle W_{PT} \rangle_{intr} / \Delta E$.

The intrinsic-state expectation value $\langle S_z \rangle_{intr}$ is **larger** than a typical matrix element in a spherical nucleus.

The expected enhancement factor is larger than 100!

Outline

1 Introduction

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra

ConclusionsOverview

Ma A

$S_{^{225}Ra} \sim \langle S_z \rangle_{intr} \langle \textit{W}_{PT} \rangle_{intr} / (55.3 \text{ keV})$

- Error in $\langle S_z \rangle_{intr}$ is < 2.
- A first calculation was made [Engel, Bender, Dobaczewski, JHJ and Olbratowski, PRC 68, 025501 (2003)] assuming a delta W_{PT} and direct terms only.
- Finite range is more realistic. Exchange terms and short range correlations contribute ~ 10%.
- \$\langle W_{PT} \rangle_{intr}\$ is harder to estimate because it is sensitive to the nuclear spin distribution (complicated to describe near the Fermi surface).

$S_{^{225}Ra} \sim \langle S_z \rangle_{intr} \langle \textit{W}_{PT} \rangle_{intr} / (55.3 \ \text{keV})$

• Error in $\langle S_z \rangle_{intr}$ is < 2.

- A first calculation was made [Engel, Bender, Dobaczewski, JHJ and Olbratowski, PRC 68, 025501 (2003)] assuming a delta W_{PT} and direct terms only.
- Finite range is more realistic. Exchange terms and short range correlations contribute $\sim 10\%$.
- \$\lambda W_{PT} \rangle_{intr}\$ is harder to estimate because it is sensitive to the nuclear spin distribution (complicated to describe near the Fermi surface).

$S_{^{225}Ra} \sim \langle S_z angle_{intr} \langle W_{PT} angle_{intr} / (55.3 \ { m keV})$

- Error in $\langle S_z \rangle_{intr}$ is < 2.
- A first calculation was made [Engel, Bender, Dobaczewski, JHJ and Olbratowski, PRC 68, 025501 (2003)] assuming a delta W_{PT} and direct terms only.
- Finite range is more realistic. Exchange terms and short range correlations contribute \sim 10%.
- $\langle W_{\rm PT} \rangle_{\rm intr}$ is harder to estimate because it is sensitive to the nuclear spin distribution (complicated to describe near the Fermi surface).

$S_{^{225}Ra} \sim \langle S_z angle_{intr} \langle W_{PT} angle_{intr} / (55.3 \ { m keV})$

- Error in $\langle S_z \rangle_{intr}$ is < 2.
- A first calculation was made [Engel, Bender, Dobaczewski, JHJ and Olbratowski, PRC 68, 025501 (2003)] assuming a delta W_{PT} and direct terms only.
- Finite range is more realistic. Exchange terms and short range correlations contribute \sim 10%.
- $\langle W_{\rm PT} \rangle_{\rm intr}$ is harder to estimate because it is sensitive to the nuclear spin distribution (complicated to describe near the Fermi surface).

$S_{^{225}Ra} \sim \langle S_z angle_{intr} \langle W_{PT} angle_{intr} / (55.3 \ { m keV})$

- Error in $\langle S_z \rangle_{intr}$ is < 2.
- A first calculation was made [Engel, Bender, Dobaczewski, JHJ and Olbratowski, PRC 68, 025501 (2003)] assuming a delta W_{PT} and direct terms only.
- Finite range is more realistic. Exchange terms and short range correlations contribute \sim 10%.
- </l

Q (A

Enhancement 225Ra

The nuclear Schiff moment of ²²⁵Ra

Nuclei	a ₀	a ₁	a ₂
²²⁵ Ra (zero range only ^[1])	-5.06	10.4	-10.1
^[1] Engel <i>et al.</i> , PRC 6 ^[2] Dobaczewski and Engel, ^[3] Dmitriev et al., PRC	58 , 02550 PRL 94 , 1 71 , 0355	1 (2003) 232502 (2 01 (2005)	2005)

Enhancement 225Ra

The nuclear Schiff moment of ²²⁵Ra

Nuclei	a ₀	a ₁	a ₂
²²⁵ Ra (zero range only ^[1])	-5.06	10.4	-10.1
^[1] Engel <i>et al.</i> , PRC (68 , 02550	1 (2003)	

< 口 > < 🗗

그는 소프는

€

5990

Enhancement 225Ra

The nuclear Schiff moment of ²²⁵Ra

mary			
Nuclei	a ₀	a ₁	a ₂
²²⁵ Ra (zero range only ^[1])	-5.06	10.4	-10.1
²²⁵ Ra (finite range + src ^[2])	-1.5	6.0	-4.0
 ^[1] Engel <i>et al.</i>, PRC 68, 025501 (2003) ^[2] Dobaczewski and Engel, PRL 94, 232502 (2005) ^[3] Dmitriev et al., PRC 71, 035501 (2005) 			

< D >

≣

ъ

5990
Enhancement 225Ra

The nuclear Schiff moment of ²²⁵Ra

Nuclei	a ₀	a ₁	a ₂
²²⁵ Ra (zero range only ^[1])	-5.06	10.4	-10.1
²²⁵ Ra (finite range + src ^[2])	-1.5	6.0	-4.0
²²⁵ Ra (no deformation ^[3])	-0.033	0.037	-0.046

< □ > < 同

► < Ξ ►</p>

≣

5990

Outline

1 Introduction

2 Spherical nuclei

- Nuclear physics input
- Schiff-related observables in ²⁰⁸Pb
- The nuclear Schiff moments of ¹²⁹Xe and ¹⁹⁹Hg
- 3 Octupole-deformed nuclei
 - Octupole enhancement
 - The nuclear Schiff moment of ²²⁵Ra

ConclusionsOverview

Q (A

Spherical nuclei

- Nuclear collective effects are very important in describing the nuclear Schiff response to a PT-odd NN potential.
- The isoscalar coefficient is significantly suppressed when compared to previous, less sophisticated, calculations.
- Uncertainty is a factor of 5, mainly because of our lack of knowledge about the effective PT-even NN interaction.

- Octupole deformations enhance substantially the nuclear Schiff moment relative to spherical nuclei.
- The enhancement factors depend on the potential channel and on the effective Skyrme interaction.

Spherical nuclei

- Nuclear collective effects are very important in describing the nuclear Schiff response to a PT-odd NN potential.
- The isoscalar coefficient is significantly suppressed when compared to previous, less sophisticated, calculations.
- Uncertainty is a factor of 5, mainly because of our lack of knowledge about the effective PT-even NN interaction.

- Octupole deformations enhance substantially the nuclear Schiff moment relative to spherical nuclei.
- The enhancement factors depend on the potential channel and on the effective Skyrme interaction.

Spherical nuclei

- Nuclear collective effects are very important in describing the nuclear Schiff response to a PT-odd NN potential.
- The isoscalar coefficient is significantly suppressed when compared to previous, less sophisticated, calculations.
- Uncertainty is a factor of 5, mainly because of our lack of knowledge about the effective PT-even NN interaction.

- Octupole deformations enhance substantially the nuclear Schiff moment relative to spherical nuclei.
- The enhancement factors depend on the potential channel and on the effective Skyrme interaction.

Spherical nuclei

- Nuclear collective effects are very important in describing the nuclear Schiff response to a PT-odd NN potential.
- The isoscalar coefficient is significantly suppressed when compared to previous, less sophisticated, calculations.
- Uncertainty is a factor of 5, mainly because of our lack of knowledge about the effective PT-even NN interaction.

- Octupole deformations enhance substantially the nuclear Schiff moment relative to spherical nuclei.
- The enhancement factors depend on the potential channel and on the effective Skyrme interaction.

Spherical nuclei

- Nuclear collective effects are very important in describing the nuclear Schiff response to a PT-odd NN potential.
- The isoscalar coefficient is significantly suppressed when compared to previous, less sophisticated, calculations.
- Uncertainty is a factor of 5, mainly because of our lack of knowledge about the effective PT-even NN interaction.

Octupole-deformed nuclei

- Octupole deformations enhance substantially the nuclear Schiff moment relative to spherical nuclei.
- The enhancement factors depend on the potential channel and on the effective Skyrme interaction.

90

Spherical nuclei

- Nuclear collective effects are very important in describing the nuclear Schiff response to a PT-odd NN potential.
- The isoscalar coefficient is significantly suppressed when compared to previous, less sophisticated, calculations.
- Uncertainty is a factor of 5, mainly because of our lack of knowledge about the effective PT-even NN interaction.

Octupole-deformed nuclei

- Octupole deformations enhance substantially the nuclear Schiff moment relative to spherical nuclei.
- The enhancement factors depend on the potential channel and on the effective Skyrme interaction.

Ma A

$ S_{225_{Ra}}/S_{199_{Hg}} $							
	Skyrme interaction	a ₀	a ₁	a ₂			
	SIII	100	123	177			
	SkM*	522	307	500			
	SLy4	1000	188	677			
	SkO′	150	81	222			

João H. de Jesus Nuclear Schiff Moment Calculations

... THE END!

< • • • **•** •

물에서 물에서

€

5990

João H. de Jesus Nuclear Schiff Moment Calculations