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Introduction

« Energy difference between infinite

homogeneous neutron matter and

infinite homogeneous nuclear 0
matter
o Alternatively, "
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« These two quantities need not

coincide at high density
A.S., PRC 74 (2006) 045808.

o Crusts: Symmetry energy
contributes to the transition density,
the properties of nucleil in the crust

and the dripped neutron density.
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The Influence of the Symmetry Energy

Ieavy lon Collisions
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A.S., M. Prakash, J.M. Lattimer, and P.J. Ellis, Phys. Rep. 411 (2005) 325.




Size of the crust Transition density
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Size of the crust
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Crust vs. Mass
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o Crust thickness varies by as much as a factor of tive

« Of relevance tfor the cooling of quiescent LM XB's after outburst
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J.M. Lattimer, K.A. van Riper, M. Prakash, and M. Prakash, Ap. J 425 (1994) 802.



Size of the crust KS 1731

e Assume a 1.4 solar mass star

with an 11 km radius
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« Observations imply cooling
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Nuclei in the crust Crust model

« Standard liquid drop model: Bulk + Surface + Coulomb
« Bulk energy determined by the equation of state

« Treat neutron and proton surfaces independently: two surface energies

« No shell effects or pairing yet...
« Some surface and Coulomb parameters fixed by matching to Moller's FRDM
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Nuclei in the crust
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Shear velocities in SGRs

« Determine effect of symmetry

energy on the shear velocity

vs = (1/p)'/”?

T. Stromayer et al., Ap J 375 (1991) 679,
T. Piro Ap. J Lett. 634 (2005) 153, L.
Samuelsson and N. Andersson, MNRAS
374 (2007) 256, J.M. Lattimer and M.
Prakash, astro-ph/0612440 (2006)

« Shear modulus determined
under the assumption of a

simple one-component crystal

« Shell effects and pairing may
be smaller for more
neutron-rich and heavier

systems?



Minimal Philosophy

What 1s a simple model for the content and mass of
neutron stars and the nature of the crust which can

account for a large class of observations?

For now, 1ignore magnetic fields, magnetars, and

pulsar mechanism.
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Minimal model

e The minimal cooling paradigm
o No exotic matter
o No direct Urca cooling
o Include the full variation in pairing,
envelope composition, neutrino
emission from Cooper pair breaking
and reformation

o Then, compare with data
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Isolated NS Cooling
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e The neutron star in 3C58 might suggest "enhanced
cooling", but isolated neutron stars are very
consistent with "minimal cooling".

e Smaller mass for isolated NSs, with little exotic

cooling



Minimal Model SAX J1808

« Low mass X-ray binaries
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Minimal Model KS1731 Bursts and Superbursts

« KS 1731 cooled very tast aftter going into quiescence, implies temperature

near saturation density 1s 10°K

« KS 1731 also exhibited a superburst, meaning that the temperature at lower

densities was larger 5 X 10°K
E.F. Brown, Ap. J Lett. 614 (2004) 57

« This cannot be explained with our simple model unless...
o Require that the Cooper pair breaking emissivity is suppressed (by a factor of 100)
o Require that the crust has low thermal conductivity, either because its amorphous or impure.
o Uncertainties in Carbon fusion cross section don't work

o Other sources of heating might also work
A. Cumming, J. Macbeth, J.J.M in 't Zand, and D. Page, Ap. J 646 (2006) 429

« Not necessarily incompatible with enhanced cooling in (at least some)
LMXBs



Minimal Model A New Model?

 Isolated NSs are born with smaller masses, but that accretion can

significantly change that value. What about magnetar masses?

« Enhanced cooling 1s required at large mass, but not for many cooling

1solated NSs (note that this conclusion depended on our knowlege of the
NS crust)

« Superbursts and KS 1731 require lowering of the Cooper pair emissivity

and some way to lower the crusts thermal conductivity



Summary

« Symmetry energy 1s important for determining the size of the NS

crust, but it's not enough. LM XB's are probably not low mass objects.

« Symmetry energy 1s important for and the nuclei present inside the NS

crust, the shear velocity may have significant uncertainties.

« There 1s now strong evidence tor cooling beyond the "standard

model".

 There 1s likely a minimal model which explains a large number of
observations. Are there more possibilities? Which observations can we

not explain?



Future

« The physics of neutron star crusts 1s very thorny, the theorists have much
work to do, yet we are a vibrant community which 1s making progress!
Keep the observations coming, contact us with questions or concerns

anytime. Don't give 1n to dark energy!



