Status of lattice calculations of V_{us} (and possibly other CKM elements)

An informal review, based on results of FNAL, MILC, HPQCD, NPLQCD and RBC/UKQCD collaborations

Stephen R. Sharpe

University of Washington

Outline

- Basics of method (on board)
- Lattice systematics—general considerations (on board)
- Choices of fermion discretization
 - MILC improved staggered
 - Domain Wall fermion (DWF)
- Results: present and future
- Constraints on other CKM elements from lattice calculations

Why need $m_{\ell}^{\rm lat} \approx m_s^{\rm phys}/10$?

For percent-level accuracy (e.g. in f_{π}) require [MILC/FNAL/HPQCD improved staggered results]

Fermion discretizations

Precision results relevant to V_{us} primarily from two lattice fermion actions

- □ Improved staggered fermions ("asqtad" [MILC,Lepage])
 - + Computationally fast
 - Rooting trick ("ugly"? [SS Lattice 2006 review])
 - Complicated "staggered chiral perturbation theory" fits needed to take chiral-continuum limits [SS & Lee, Aubin & Bernard]
- Domain-wall fermions (DWF) [Kaplan,Shamir]
 - 10-20 times slower than staggered
 - + Almost exact chiral symmetry
 - + Correct number of fermions

Hybrid DWF valence on staggered sea quarks also used [NPLQCD] Recent advance:

Q RHMC provides $\gtrsim 6$ speed up for both fermion types [Clark & Kennedy] Other fermion types will also be used in future

Wilson-like, twisted mass, overlap

MILC staggered ensemble: **past** and present

MILCO: completed 2003-4. Coarse and Fine lattices

a (fm)	am'_ℓ / am'_s	L(fm)	dims.	# lats.	$m_{\pi}L$
≈ 0.12	0.03 / 0.05	2.4	$20^3 \times 64$	564	7.6
≈ 0.12	0.02 / 0.05	2.4	$20^3 \times 64$	484	6.2
≈ 0.12	0.01 / 0.05	2.4	$20^3 \times 64$	658	4.5
≈ 0.12	0.01 / 0.05	3.4	$28^3 \times 64$	241	6.3
≈ 0.12	0.007 / 0.05	2.4	$20^3 \times 64$	493	3.8
≈ 0.12	0.005 / 0.05	2.9	$24^3 \times 64$	527	3.8
≈ 0.09	0.0124 / 0.031	2.5	$28^3 \times 96$	531	5.8
≈ 0.09	0.0062 / 0.031	2.5	$28^3 \times 96$	583	4.1

MILC staggered ensemble: past and present

MILC1: completed FY07. Extra-fine, Medium-coarse, and extended Coarse/Fine

a (fm)	am'_{ℓ} / am'_s	L(fm)	dims.	# lats.	$m_{\pi}L$
≈ 0.15	0.0290 / 0.0484	2.4	$16^3 \times 48$	600	6.6
≈ 0.15	0.0194 / 0.0484	2.4	$16^3 \times 48$	600	5.5
≈ 0.15	0.0097 / 0.0484	2.4	$16^3 \times 48$	600	3.9
≈ 0.15	0.00484 / 0.0484	2.4	$20^3 \times 48$	600	3.5
≈ 0.12	0.03 / 0.05	2.4	$20^3 \times 64$	564	7.6
≈ 0.12	0.02 / 0.05	2.4	$20^3 \times 64$	484	6.2
≈ 0.12	0.01 / 0.05	2.4	$20^3 \times 64$	658	4.5
≈ 0.12	0.01 / 0.05	3.4	$28^3 \times 64$	241	6.3
≈ 0.12	0.007 / 0.05	2.4	$20^3 \times 64$	493	3.8
≈ 0.12	0.005 / 0.05	2.9	$24^3 \times 64$	527	3.8
$pprox\! 0.12$	0.03 / 0.03	2.4	$\mathbf{20^3}\times64$	350	7.6
$pprox\! 0.12$	0.01 / 0.03	2.4	$\bf 20^3 \times 64$	349	4.5
≈ 0.09	0.0124 / 0.031	2.5	$28^3 \times 96$	531	5.8
≈ 0.09	0.0062 / 0.031	2.5	$28^3 \times 96$	583	4.1
pprox 0.09	0.0031 / 0.031	3.6	$\mathbf{40^3}\times96$	473	4.4
≈ 0.06	0.0072 / 0.018	2.9	$48^3 \times 144$	550	6.3
≈ 0.06	0.0036 / 0.018	2.9	$48^{3} \times 144$	350^{*}	4.5

S. Sharpe, "Status of lattice calculations of $V_{{\it U}\,{\it S}}$ ", INT, 5/23/2007 – p.5/18

DWF ensemble: present and possible future

FY06-07: Coarse lattice at two volumes; Fine lattices underway[†]

a (fm)	m_ℓ/m_s	Size	L_5	L (fm)	MC traj.	TF-Yr	Label
0.12	0.59	$16^3 \times 32$	16	2.0	4050		DWF0
0.12	0.33	$16^3 \times 32$	16	2.0	4000		DWF0
0.12	0.3	$24^3 \times 64$	16	3.0	9000 †	0.7	DWF1
0.12	0.19	$24^3 \times 64$	16	3.0	9000 †	0.8	DWF1
0.09	0.20	$32^3 \times 64$	16	3.0	4500 [†]	1.3	DWF1

Speed-up due to RHMC algorithm $\gtrsim 6$

DWF ensemble: present and possible future

By FY09: Major milestone—two lattice spacings with light quark masses

<i>a</i> (fm)	m_ℓ/m_s	Size	L_5	L (fm)	MC traj.	TF-Yr	Label
0.12	0.59	$16^3 \times 32$	16	2.0	4050		DWF0
0.12	0.33	$16^3 \times 32$	16	2.0	4000		DWF0
0.12	0.3	$24^3 \times 64$	16	3.0	9000	0.7	DWF1
0.12	0.19	$24^3 \times 64$	16	3.0	9000	0.8	DWF1
0.09	0.20	$32^3 \times 64$	16	3.0	4500	1.3	DWF1
0.09	0.136	$\mathbf{32^3} imes 64$	16	3.0	4500	1.4	DWF2
0.09	0.136	$48^3 imes 64$	16	4.4	5000	7.0	DWF2
0.09	0.065	$48^3 \times 64$	16	4.4	5000	8.6	DWF3
0.09	1/27	$64^3 \times 128$	24	5.9	10000	230	DWF5
0.06	0.144	$48^3 \times 64$	16	3.0	10000	18	DWF3
0.06	0.084	$64^3 \times 128$	16	4.0	10000	130	DWF4
0.06	1/27	$96^3 \times 128$	16	5.9	10000	680	DWF6

Speed-up due to RHMC algorithm $\gtrsim 6$

Summary of present situation

- Staggered fermions:
 - Ensemble allows all errors to be controlled
 - Successful validation (and predictions of f_D , $D \rightarrow K$ form factor, and $m(B_c)$) support validity of rooting trick
- Domain-wall fermions:
 - ▶ Present results with only one lattice spacing, and only with $m_{\ell}/m_s \ge 0.39$
 - Present results do not control all errors
 - Over next 2-3 years, will have ensemble allowing all errors to be controlled

Staggered results: validation

Updated (2006) comparison with experiment for "gold-plated" quantities: [Lepage]

S. Sharpe, "Status of lattice calculations of $V_{{\it U}\,{\it S}}$ ", INT, 5/23/2007 – p.8/18

2006 staggered results: spectrum [MILC]

- □ Partially quenched results for $m_{\pi}^2/(m_{\rm av}^{\rm val})$
- Part of global fit to PGB properties
- Data shows chiral logarithms
- Super-fine lattice results agree with predictions
- Partially quenched staggered chiral perturbation theory describes data well

2006 staggered results: decay constants [MILC]

Results for V_{us} and implications for unitarity

□ Present staggered fermion result [MILC06]

 $f_K/f_\pi = 1.208^{+7}_{-14} \implies |V_{us}| = 0.2223^{+26}_{-14}$ [cf. PDG 0.2257(21)]

Error dominated by chiral/continuum extrap, with statistical error 0.2%

- DWF valence on staggered sea at single lattice spacing [NPLQCD] $f_K/f_{\pi} = 1.218^{+11}_{-24}$
- **D** Thus f_K/f_{π} method competitive with that using $K \to \pi \ell \nu$:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9977(5)(12)(0)$ [cf. 0.9992(5)(9)(0) PDG]

- **D** By end of 2009 expect to halve error in f_K/f_{π} [LQCD white paper]
- If so, will have more stringent test of unitariy, e.g. *could* be:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9977(5)(6)(0) = 0.9977(8)$

V_{us} using $K \to \pi$ form factor

Lattice calculates:

 $\langle \pi(p') | \bar{s} \gamma_{\mu} u | K(p) \rangle = (p_{\mu} + p'_{\mu}) f_{+}(q^{2}) + (p_{\mu} - p'_{\mu}) f_{-}(q^{2})$

- Measured $\Gamma[K \to \pi \ell \nu]$ determines $|f_+(q^2)V_{us}|^2$
- \square Experiment gives q^2 dependence; need theory to provide

$$f_{+}(0) = 1 + f_2 + f_4 + \dots = 1 - 0.023 + f_4 + \dots$$

- \Box f_2 is known function of PGB masses (Ademollo-Gatto th'm)
- \Box "Job" of lattice is to calculate $\Delta f = f_+(0) 1 f_2$
- **D** PDG uses 1984 estimate [Leutwyler & Roos] : $\Delta f = -0.016(8)$
- Need more reliable calculation
- Full continuum chiral symmetry greatly simplifies calculation:
 ⇒ use DWF

First unquenched results [RBC/UKQCD]

- DWF at a = 0.12 fm and L = 2 & 3 fm boxes [hep-lat/0702026]
- Builds on method developed in quenched theory by [Becirevic et al.]
- **C** Step 1: determine $f_+(0) 1 = f_0(0) 1$ for fixed m_ℓ and m_s
- □ Very accurate point at $q^2 = q_{\text{max}}^2 > 0$ anchors extrapolation

First unquenched results (cont.)

- **C** Step 2: extrapolate $R_{\Delta f} = \Delta f / (m_K^2 m_\pi^2)^2$ to physical masses
- Use approximate NNLO chiral form (analytic terms only)

First unquenched results (final)

- Step 3: estimate systematic errors
- \Box That due to $a \rightarrow 0$ extrpolation is (reasonable) guesstimate
- **□** Find $\Delta f = -0.0161(46)(15)(16)(7) = -0.016(5)$
- \square Errors from statistics, chiral extrap., q^2 extrap, a extrap
- **Consistent with Leutwyler-Roos value:** $\Delta f = -0.016(8)$

Conclusions:

- □ Fully controlled result from $K \to \pi$ form factor with errors smaller than Leutwyler-Roos will be available in next couple of years when full DWF ensemble available (which will also allow validation of DWF methodology)
- **C** Errors on $|V_{us}|$ likely comparable to those from f_K/f_{π}

What else can be achieved by $\sim 2009?$

 $\frac{\text{US LQCD project:}}{\text{staggered}/\text{NRQCD}}$ Calculations of weak matrix elements using both DW and staggered/NRQCD fermions will allow precision tests of SM

Hadronic Matrix Element	Lattice Estimate Current	UTA Result Current	Lattice Errors 10. TF-Yr 2007	Lattice Errors 50. TF-Yr 2009	
\widehat{B}_K	0.77 ± 0.08	0.75 ± 0.09	± 0.05	± 0.03	
$f_{B_s}\sqrt{\widehat{B}_{B_s}}$	$282 \pm 21 { m ~MeV}$	$261\pm 6~{ m MeV}$	$\pm 16 { m ~MeV}$	$\pm 9 \mathrm{MeV}$	
ξ	1.23 ± 0.06	1.24 ± 0.08	± 0.04	± 0.02	

- Comparison of UTA (experiment) and lattice tests SM
- 2007: all lattice errors controlled
- **2009:** all lattice errors at or below experimental errors

Precision tests of SM (cont.)

Present constraints on $\bar{\rho}, \bar{\eta}$ [UTfit]

Impressive consistency-will be solidified and made much more precise by this project

Cabibbo-Kobayashi-Maskawa matrix

$$\left(\begin{array}{cccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right) =$$

