New Ideas on CPV Matthew Schwartz Johns Hopkins University

INT workshop on EDMs and CPV

March 20, 2007

Outline

- Strong CP: what is the problem?
- Old ideas on CPV
 - Axions
 - Spontaneous CPV
- New ideas on CPV
 - Strong CP as a flavor problem
 - New symmetries from extra dimensions
- Conclusions

Matthew Schwartz Johns Hopkins University

Strong CP Simplified

The Simple Question:

```
The neutron has an EDM
```

 $d_n = 10^{-16} e - cm \theta$) $\theta < 10^{-9}$

Why is θ so small?

The Simple Answer:

 θ is just a parameter in the standard model Lagrangian. Its renormalized value happens to be small

Strong CP Complicatified

Is there more to it?

 Other small parameters in the Standard Model Lagrangian are protected by symmetries

For example, $m_{e} = 10^{-6} h H i$

protected by a chiral symmetry: $\psi_{e} \rightarrow e^{i\gamma_{5}\alpha} \psi_{e}$

't Hooft naturalness So, quantum corrections to m_e are proportional to m_e

• No enhanced symmetry when $\theta = 0$ P and CP are already broken

However,

• If we set θ = 0, quantum corrections are small

$$\Delta \theta \sim 10^{-18}$$

Matthew Schwartz Johns Hopkins University

UV Sensitivity

What about UV sensitivity? $\Delta m_e / m_e$ $(\text{tuning} \sim 10^{-6})$ $\int DV_{\text{finite}}$ With a cutoff at $M_{pl:}$ $\Delta m_e / m_e$ $(\text{tuning} \sim 10^{-34})$ $\int V_{\text{sensitive}}$ $\Delta m_h^2 / M_{pl}^2$ $(\text{tuning} \sim 10^{-34})$ $DV_{\text{sensitive}}$

 θ gets a logarithmically divergent correction at 7 loops

$$\Delta \theta \sim 10^{-18} + 10^{-30} \log (M_{pl}/m_q)$$
 (tuning ~ 10⁻¹⁰)

So, θ is formally UV sensitive, but

$$\theta = 10^{-10}$$
 at M_{pl}) $\theta = 10^{-10}$ at 1 MeV

 θ is more like m_e than m_h

Strong CP is a flavor problem, not a naturalness problem

Matthew Schwartz Johns Hopkins University INT EDMs&CPV March 20, 2007

UV sensitive

Axions

What are axions?

- Introduce complex scalar: $\Phi = \Phi_0 e^{ia}$ • New Peccei-Quinn Symmetry: $\begin{cases} \Phi \to \Phi e^{i\delta} & (a \to a + \delta) \\ \theta \to \theta - \delta & & \text{anomaly} \end{cases}$
- a dynamically relaxes $\theta = 0$

For example, two Higgs doublet model:

$$\mathcal{L} = Y_{u}Q_{L}\Phi u_{R} + Y_{d}Q_{L}\tilde{\Phi}d_{R} + \dots$$

However, PQ symmetry is anomalous

- nothing forbids $\mathcal{L} \to \mathcal{L} + g_5 M_{pl}^{-1} \Phi^4(\Phi + \Phi^*) + g_1 M_{pl}^{-3} (\Phi + \Phi^*)$ $g_5 < 10^{-54} \qquad g_1 < 10^{-189}$
- reintroduces UV sensitivity

$$\theta = 0$$
 at M_{pl}) $\theta \sim 1$ at 1 MeV

- Axions treat strong CP as a naturalness problem, but make the problem worse!
- Axions teach us nothing about flavor

Matthew Schwartz Johns Hopkins University

Massless up quark

What about the m_u=0 solution?

• There is no enhanced symmetry at $m_u = 0$

Neutron EDM is

$$d_n = 10^{-16} e - cm \left(\frac{m_u}{1 \text{ MeV}}\right) \theta$$

$$) m_u < 1 \text{ eV} = 10^{-15} \text{ h H i}$$

More natural just to set
$$\theta = 10^{-10}$$
!

- Ruled out: $m_u \sim 1 \text{ MeV}$
- Even if it did work, setting m_u=0 teaches us nothing about flavor

Strong CP and flavor

There is another CP violating phase

$$\theta_{\text{weak}}$$
 = Arg Det [Y_u Y_d -Y_d Y_u] ~ 1

If θ_{QCD} =0, the Strong CP problem is exactly a flavor problem:

Why are **some** yukawa couplings smaller than **others**?

Matthew Schwartz Johns Hopkins University

Spontaneous CPV

• Suppose CP is a good symmetry at high energy

$$\theta_{\rm QCD} = \theta_{\rm flavor} = \theta_{\rm weak} = 0$$

• CP is spontaneously broken

 $\mathsf{CP} : \Phi \to -\Phi$

• Try to arrange

$$\theta_{\text{weak}} = \text{Arg Det} [Y_u Y_d - Y_d Y_u] \sim 1$$

 $\theta_{\text{flavor}} = \text{Arg Det} [Y_u Y_d] < 10^{-10}$
 $\theta_{\text{QCD}} < 10^{-10}$

- Examples
 - Nelson-Barr models
 - Extra dimensional models: Twisted Split Fermions
 - Left-Right symmetric models

Matthew Schwartz Johns Hopkins University

Nelson-Barr

Phys.Lett.B136:387,1984 Phys.Rev.Lett.53:329,1984

- renormalizable theory
- field content:
 - standard model: Q_L, H, u_R, d_R
 - **CP** violating scalar: Φ
 - heavy vectorlike generators: R
- new global symmetries
- achieves θ = 0 and θ_{weak} ~ 1 classically
- to maintain small θ in quantum theory requires

Matthew Schwartz Johns Hopkins University

Extra Dimensions

 Φ gets a complex vev

- CP is spontaneously broken
- Q_L gets a mass

automatically Hermetian

$$M_{ij} = m_{ij} h \hat{\mathbb{O}} i + m_{ij}^{y} h \hat{\mathbb{O}}^{?} i$$

Matthew Schwartz Johns Hopkins University

Twisted Split Fermions

effective Yukawa matrices are $Y_u^{eff} = Y_u$ and $Y_d^{eff} = K(L) Y_d$, so

 $\theta = \text{ArgDet}(Y_u K Y_d) = 0$ $\theta_{\text{weak}} = \text{ArgDet}(Y_u K Y_d - K Y_d Y_u) \sim 1$

Matthew Schwartz Johns Hopkins University

What happened?

θ violates both **P** and **CP**

but either P and CP is protected everywhere

P is part of 5D Lorentz invariance

- bulk mass M_{ii} must be Hermetian
- source of **CPV**, Φ , is a 5D psuedoscalar

Matthew Schwartz Johns Hopkins University

How big is θ in twisted split fermions?

• After spontaneous symmetry breaking, h Φ i \neq 0

 $\theta_{\rm QCD} = \theta_{\rm flavor} = 0$ $\theta_{\rm weak} \sim 1$

• estimate quantum corrections by adding all operators consistent with symmetries

Matthew Schwartz Johns Hopkins University

Left-right symmetric models

- renormalizable
- use right-handed doublets: Q_L, Q_R, Φ
- use P, instead of CP, to set θ =0 classically
- effective mass matrix is

$$M_{ij} = (f_{ij} + f_{ij}^y)h \odot i$$

1. Impose **CP** f_{ij} is real h©i is complex $det(M_{ij})$ is complex

2. no **CP** f_{ij} is complex h©i is real why?

real determinant guaranteed by 5D lorentz invariance

must have real determinant for $\theta=0$

Twisted Split Fermions have $M_{ij} = m_{ij} h \hat{c} i + m_{ij}^{y} h \hat{c}^{?} i$

Matthew Schwartz Johns Hopkins University

Other ideas

Axions

- String axions
 - Can calculate (in principle) whether there is explicit PQ violation
 - Difficult to get f_a~10⁻¹² GeV
- Warped axions
 - Use Randall-Sundrum like warping to generate $f_a \sim 10^{-12}$ GeV
 - Without an explicit string construction, still unnatural
- Three-form axions
- Gauged axions
 - Anomaly canceled by sequestered fermions in an extra dimension
 - Seems promising, but no explicit models have been constructed

Spontaneous CPV

• Hiller-Schmaltz

•Use supersymmetry to keep θ = 0, but allow $\theta_{weak} \sim 1$

- Warped-twisting
 - •Twisted split fermions in Randall-Sundrum context
 - •May have complimentary insights into flavor

Matthew Schwartz Johns Hopkins University INT EDMs&CPV March 20, 2007

hep-ph/0611278

hep-th/0507215

hep-ph/0103346

hep-ph/0212151

Conclusions

• The Strong CP problem is easy to solve

*θ*_{ren} = 10^{−10}

- If you think this solution is unnatural, you must have a more natural solution
 - Axions are less natural
 - mu = 0 is less natural
 - Left-Right models are less natural
- Instead, we can think of θ as a flavor parameter

• "why is $\theta = 10^{-10}$?" like "why is $m_{electron} = 10^{-6} m_{top}$?"

- Spontaneous **CPV** explains why QCD vacuum angle $\theta_{\text{QCD}} = 0$
- Extra dimensions are a natural flavor framework
 - Split fermions explain mass hierarchies
 - Twisting explains weak CP phase
 - 5D Lorentz invariance (partity) and 5D locality protect *θ*
- In Twisted Split Fermions, expect

θ ∼ 10⁻¹²

Matthew Schwartz Johns Hopkins University