Hot Dilute Neutron Matter

Gautam Rupak

Department of Physics North Carolina State University Raleigh, NC 27695

Motivation

Origin of elements

Giant nuclei

Neutrinosphere

●
$$T \sim 10 - 20$$
 MeV.

• Cross section: $n \sim 1/(G_F^2 E_\nu^2 R) \sim 10^{-4} \text{ fm}^{-3}$. Dilute $1/n^{1/3} \gg 1/m_\pi$ and cold $\sqrt{2\pi/(MT)} \gg 1/m_\pi$ on nuclear scale: perturbation.

NC STATE UNIVERSITY

Nuclear interaction

$$i\mathcal{A}(k)_{{}^{1}S_{0}} = \frac{4\pi}{M} \frac{i}{k \cot \delta - ik}$$
$$\approx \frac{4\pi}{M} \frac{i}{-\frac{1}{a} + \frac{r_{0}}{2}k^{2} - ik + \cdots},$$

 $■ |a| \sim 19 \text{ fm} \gg 1/m_{\pi} \sim 1.4 \text{ fm}.$

■ neutron- α *P*-wave resonance $|a_P| \sim 60 \text{ fm}^3$.

■ atomic systems: In ⁴He gases, $a \sim 100 \mathring{A} \gg r_0 \sim 7 \mathring{A}$.

NC STATE UNIVERSITY

From Atoms to Neutron Stars

From Atoms to Neutron Stars

Finite density system

● Consider a dilute system: $R^3 n \ll 1$.

• At temperature T: $\lambda = \sqrt{2\pi/(MT)} \gg R$.

Microscopic physics irrelevant.

Finite density system

● Consider a dilute system: $R^3 n \ll 1$.

• At temperature T: $\lambda = \sqrt{2\pi/(MT)} \gg R$.

Microscopic physics irrelevant.

Solution However, no a^3n , $a\sqrt{MT} \gg 1$ expansion.

Finite density system

● Consider a dilute system: $R^3 n \ll 1$.

• At temperature T: $\lambda = \sqrt{2\pi/(MT)} \gg R$.

Microscopic physics irrelevant.

Solution However, no a^3n , $a\sqrt{MT} \gg 1$ expansion.

Systematic calculation for $n\lambda^3 \ll 1$ even as $a^3n \to \infty$ and $a\sqrt{MT} \to \infty$.

Outline

- 1. Virial expansion
- 2. Unitarity
- 3. Neutron matter: effective range ρ , *P*-wave, ...
- 4. Neutrino response
- 5. Conclusion

Non-ideal gases

$$\frac{P}{T} = n + B(T)n^2 + C(T)n^3 + \cdots$$

Free Theory

Fugacity $z = \exp(\mu/T)$ expansion:

$$n = 2 \int \frac{d^3 k}{(2\pi)^3} \frac{1}{e^{(k^2/(2M)-\mu)/T} + 1},$$
$$\approx \frac{2}{\lambda^3} \left[z - \frac{z^2}{2\sqrt{2}} + \frac{z^3}{3\sqrt{3}} + \cdots \right].$$

Small $n\lambda^3$ implies small z, where $\lambda = \sqrt{2\pi/(MT)}$.

Effective positive pressure

$$\frac{P}{n} = T \left[1 + \frac{\lambda^3 n}{8\sqrt{2}} + \cdots \right]$$

٠

In general

$$n = \frac{2}{\lambda^3} \left[b_1(T)z + 2b_2(T)z^2 + 3b_3(T)z^3 + \cdots \right],$$

$$P = \frac{2T}{\lambda^3} \left[b_1(T)z + b_2(T)z^2 + b_3(T)z^3 + \cdots \right].$$

 b_l receives contribution at most from *l*-body physics.

Density dependence in $z \sim n\lambda^3$

\square Interaction in b_l

$$\boldsymbol{b_l} = f(a\sqrt{MT}) \left[1 + R\sqrt{MT} + \cdots \right].$$

Interacting Theory

Short range interactions at low densities.

Need to resum for $|a|p \sim |a|\sqrt{MT} \gtrsim 1$

$$\mathcal{A} = \frac{4\pi}{M} \frac{1}{-1/a - ip} \, .$$

Interacting Theory

Short range interactions at low densities.

Need to resum for $|a|p \sim |a|\sqrt{MT} \gtrsim 1$

$$\mathcal{A} = \frac{4\pi}{M} \frac{1}{-1/a - ip} \; .$$

The effective range expansion, Schwinger 1947

$$A = \frac{4\pi}{M} \frac{1}{p \cot \delta - ip} ,$$

$$p \cot \delta = -\frac{1}{a} + \frac{r_0}{2}p^2 + \cdots .$$

Effective Field Theory

$$\mathcal{L} = \sum_{n} C_n \mathcal{O}^{(n)}$$
, from symmetry

Example:

$$\mathcal{O}^{(n)} = N_{\uparrow}^{\dagger} N_{\downarrow}^{\dagger} N_{\uparrow} p^{2n} N_{\downarrow} .$$

Separation of high-momenta Λ and low-momenta p:

$$C_n \sim \frac{1}{M\Lambda^{2n+1}}$$
,
 $\frac{C_1 \mathcal{O}^{(1)}}{C_0 \mathcal{O}^{(0)}} \sim \frac{p^2}{\Lambda^2}$, systematic, improvable, optimal

where m_{π} - Λ_{χ} , γ - m_{π} , Halo nuclei

Subtleties: quantum corrections and large scattering length.

Impact on BBN

- \square *n* + *p* → *d* + *γ* for light element production in early universe.
- Solution Experimental data scarce at $E \sim 100 \text{ KeV}$.
- \checkmark An EFT calculation with 1% uncertainty was performed (Rupak '00).

Impact on BBN

- \square *n* + *p* → *d* + *γ* for light element production in early universe.
- Solution Experimental data scarce at $E \sim 100 \text{ KeV}$.
- An EFT calculation with 1% uncertainty was performed (Rupak '00).

Free Theory again

Aside:

$$\sum_{j} \langle j | X e^{-\frac{H}{T}} | j \rangle \to \sum_{j} \langle j | X e^{-itH} | j \rangle \text{, identify } t = -\frac{i}{T} ,$$

with boundary conditions.

$$\mathcal{D}(p_0, \vec{p}) = \frac{4\pi}{Mg^2} \frac{1}{-1/a + \sqrt{p^2/4 - Mp_0 - 2M\mu}} + \mathcal{O}(z^2).$$

Virial expansion

- Closed particle loop O(z).
- Closed dimer loop $\mathcal{O}(z^2)$.
- Closed trimer loop $\mathcal{O}(z^3)$, ...

Bedaque and Rupak, 2003

Corollary

- **Particle-particle loop** $\mathcal{O}(1)$.
- **Particle-hole loop** $\mathcal{O}(z)$.
- ▶ Virial coefficient b_l receives contributions from at most *l*-body physics. $b_1 = 1$

Remember

$$n = \frac{2}{\lambda^3} \left[b_1(T)z + 2b_2(T)z^2 + 3b_3(T)z^3 + \cdots \right]$$

l-body contributions to b_l

Calculate

- **Solution** Leading order *l*-body propagator (same as in vacuum): T-matrix.
- $\ \, {} \quad {} \quad T(\eta) \text{ has cuts, poles at } \eta = -l\mu + \cdots.$
- η integral gives $1/(e^{\eta/T} + 1) \rightarrow z^l$.

Warm-up calculation

$$P = \frac{i}{2\pi} \oint \frac{d\eta}{e^{\eta/T} + 1} \int \frac{d^3 q}{(2\pi)^3} \log \left[-\frac{1}{a} + \sqrt{\frac{q^2}{4} - M(2\mu + \eta)} \right] ,$$

$$b_2(T) = \frac{1}{\sqrt{2}} e^{1/(a^2 MT)} \left[1 + \operatorname{Erf}(1/(a\sqrt{MT})) \right] \stackrel{|a| \to \infty}{=} \frac{1}{\sqrt{2}} .$$

Compare with Beth and Uhlenbeck, 1937

$$b_2(T) = \sqrt{2} \left[\sum e^{B/T} + \frac{1}{\pi} \int dk \partial_k \delta(k) e^{-k^2/(MT)} \right]$$

NC STATE UNIVERSITY

We find $b_3^{\infty} \approx 1.05$. $b_3(T)$ plotted for T around $6\mu K$ in 40%increments for ⁶Li. Rupak, 2006

 $1/2 \text{eV} \approx 1/4000 \text{\AA}^{-1}$.

Daisy contributions

Neutron matter: preliminary

Higher partial waves, effective range ρ corrections.

$$b_2(T) = -\frac{1}{2^{5/2}} + \frac{3MC_P}{4\lambda^3} + \frac{1}{\sqrt{2}}e^{\frac{\gamma^2}{MT}} \left(1 + \operatorname{Erf}(\frac{\gamma}{\sqrt{MT}})\right) - \frac{\rho}{2\lambda} - \frac{\gamma\rho^2}{4\lambda},$$

$$b_2(T = 5 \text{ MeV}) = -0.18 + 0.017 + 0.62(1 - 0.30 + 0.016)$$

 $\hat{b}_3(5 \text{ MeV}) \sim 1.05(0.93),$ $\hat{b}_3(25 \text{ MeV}) \sim 1.2(0.99),$

close to unitarity value ≈ 1.05

Equation of state

At T = 5 MeV, $T_F/T \approx 0.3$ corresponds to $n \approx 10^{-3}$ fm⁻³.

At T = 25 MeV, $n \approx 10^{-2}$ fm⁻³.

Neutrino response

$$\frac{1}{N}\frac{d\sigma}{d\Omega} = \frac{G_F^2 E_\nu^2}{4\pi^2} \left[C_A^2 (3 - \cos\theta) S_A(q) + C_V^2 (1 + \cos\theta) S_V(q) \right]$$

NC STATE UNIVERSITY

Helium

Is Efimov effect important?

Coulomb effect: $\alpha M \lambda \lesssim 0.3$ for $T \gtrsim 5$ MeV.

NC STATE UNIVERSITY

Beyond neutrinosphere

At T = 50 MeV ($1/\lambda \sim 90$ MeV, $\sqrt{MT} \sim 200$ MeV), pions using KSW in ${}^{1}S_{0}$.

Conclusions

- Systematic expansion, related to T-matrix in vacuum.
- Senchmark neutrino calculations.
- Isospin, heavier nuclei.
- Solution Neutrino interactions away from the static limit.
- Higher densities with pions ...

Thank You

Deuteron properties

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \Big|_{\text{point}} [A(q^2) + B(q^2) \tan(\frac{\theta}{2})],$$

where

$$A = F_C^2 + \frac{2}{3}\eta F_M^2 + \frac{8}{9}\eta^2 F_Q^2,$$

$$B = \frac{4}{3}\eta(1+\eta)F_M^2, \ \eta = -\frac{q^2}{4M_d}.$$

 $1\otimes 1 = 0\oplus 1\oplus 2$

Chen, Rupak and Savage '98, Phillips, Rupak and Savage '99

