SNS Neutron EDM Experiment

Brad Plaster, Caltech for the nEDM Collaboration INT, March 19, 2007

T-violating EDMs

Electric dipole moment

$$\vec{d} = \sum e_i \vec{r}_i$$
 $m_z = \pm \frac{1}{2}$

$$\vec{d} = d\hat{s}$$

EDM

spin $\frac{1}{2}$

Status of neutron EDM searches

Overview of SNS experiment

- Experiment to be staged at new Spallation Neutron Source (SNS) at Oak Ridge National Laboratory
 - I GeV proton beam on liquid Hg target
 - Beamline #13 [FNPB] : Fundamental Neutron Physics Beamline

First neutrons produced April 28, 2006

Superthermal UCN source

UCNs produced via a "superthermal process" in superfluid ⁴He

excited

$$\Delta \gg E_{\text{UCN}}$$

$$E_{\text{UCN}}\sigma_{\text{UP}} = (E_{\text{UCN}} + \Delta)e^{-\Delta/kT}\sigma_{\text{DOWN}}$$
around

In superfluid ⁴He, if ħ²k²/2m = E(Q), recoil phonon will carry away nearly all of the incident neutron's energy

Superfluid ⁴He dispersion curve

Experiment conceptual design

Measurement cell region

 \square Problem: Temporal B-field variations induce v_n fluctuations

- □ Solution: Polarized ³He "co-magnetometer"
 - ✓ Negligible EDM; ¹⁹⁹Hg EDM < 2 × 10^{-28} e-cm
 - Pick up magnetization from precessing ³He dipoles with SQUIDS

Magnetic induction expected at SQUID pick-up loop:

~ 10⁻¹⁰ Gauss

Magnetometry

ILL experiment v_n measurements

Precession frequency measurement

³He also serves as the analyzer for the measurement of the neutron precession frequency

Signal and light collection

 Signal: proton + triton generate scintillation light in superfluid ⁴He (excited He molecules decay by emitting ultraviolet light)

- ✓ Prompt pulse (time < 20 ns) from decay of singlet molecules</p>
- ✓ Afterpulsing from destructive interactions of triplet molecules
- \checkmark Wavelength-shifted to visible with measurement cell wall coatings

Background: electrons [β -decay or Compton-scattered γ -rays]

 \checkmark Afterpulsing expected to be more intense for p + T than for β

Expected sensitivity

Figure of Merit

[storage experiment]

$$|\vec{E}| \sqrt{N_{UCN} T_m}$$

Parameter	SNS	ILL [10 ⁻²⁶]
Electric field	50 kV/cm	10 kV/cm
N (number of UCN)	1×10^{6}	1.5 x 104
T _m (measurement time)	500 s	130 s
Figure-of-Merit	~100	1

Systematic uncertainties

- ³He "co-magnetometer" should suppress most of the "usual" systematics associated with EDM experiments
 Leakage currents associated with E-field reversal, etc.
- "Fundamental" systematic effects: differences in effective magnetic fields experienced by UCN and ³He
 - Limiting factor for ILL experiment which we are addressing are false EDMs from "geometric phases"
 - □ Field gradients induce off-axis field components

□ Particle rest-frame "v x E" fields

$$\vec{B}_{v} = \frac{\vec{E} \times \vec{v}}{c^{2}} \qquad (+) \qquad (\frac{\partial B_{z}/\partial z \neq 0}{\nabla \cdot B = 0} \\ B_{r} = -[(\partial B_{z}/\partial z)/2]\vec{r} \qquad (box) \qquad ($$

Setup at SNS

Collaboration and timeline

Large collaboration assembled with backgrounds in nucl-ex, hep-ex, low-temp cond-mat, AMO

Arizona State, UC-Berkeley, Boston University, Caltech, Duke, HMI, Indiana, Illinois, Kentucky, LANL, Maryland, MIT, Mississippi State, North Carolina State, ORNL, Simon Fraser, Tennessee, Yale

[Spokespersons: Martin Cooper (LANL) and Steve Lamoreaux (Yale)]

Anticipated schedule

- ✓ DOE "CD-0" granted November 2005
- ✓ DOE "CD-1" granted February 2007
- $\checkmark\,$ R&D through end of CY 2007
- ✓ "CD-2" review early 2008
- ✓ Begin commissioning components of apparatus at SNS ~ 2013

R&D studies

□ Examples of some of the on-going R&D activities

- ✓ Neutron storage time in acrylic cell coated w/ deuterated polystyrene
- ✓ High-voltage studies in superfluid ⁴He environment
- ✓ Magnetic field studies [modeling gradients, geometric phase, etc.]
- ✓ Modeling/testing of the central detector system [light transport]
- ✓ Modeling of the 8.9Å neutron beamline

Preliminary Results from Neutron Storage Time Run Using UCN Source at LANSCE

LANL: T.M. Ito et al.

- ✓ Neutron EDM search at SNS holds potential for improvement to level of 10⁻²⁸ e-cm
- Collaboration currently refining the conceptual design of the apparatus and completing R&D studies
- ✓ Experiment between DOE CD-1 and CD-2 stages
- Commissioning of apparatus components on SNS floor expected to commence ~2013