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Outline

• Polarizabilities: the promise and the problem
• Compton scattering on the proton in chiral

perturbation theory for ω ∼ mπ

• Compton scattering on the deuteron:
motivation and a first χPT calculation [O(e2P )]

• Improving on the O(e2P ) χPT calculation:
O(e2P 2), effects of the Delta(1232), and
striving for wave-function independence

• Conclusion and future work
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What are polarizabilities?

Figure courtesy R. Miskimen

• EM moments that encode
nucleon-structure
information;
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What are polarizabilities?

Figure courtesy R. Miskimen

• EM moments that encode
nucleon-structure
information;

• Mix long- (r ∼> 1/mπ) and
short-distance physics in
interesting way;

• Probe pattern of breaking of
QCD’s chiral symmetry be-

low pion-production threshold.
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Polarizabilities: promise and problem

d = 4παNE; µ = 4πβNB

⇒ H =
(p −ZeA)2

2M
− 2παNE2 − 2πβNB2
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2M
− 2παNE2 − 2πβNB2

The promise: α and β quantify response of target
to quasi-static electric and magnetic fields

AγN (ω) =
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− (Ze)2

M
+ 4παNω
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]

ǫ′ · ǫ+ 4πβNω
2(ǫ× k̂) · (ǫ′ × k̂′)
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Polarizabilities: promise and problem

d = 4παNE; µ = 4πβNB

⇒ H =
(p −ZeA)2

2M
− 2παNE2 − 2πβNB2

The promise: α and β quantify response of target
to quasi-static electric and magnetic fields

AγN (ω) =
[

− (Ze)2

M
+ 4παNω

2
]

ǫ′ · ǫ+ 4πβNω
2(ǫ× k̂) · (ǫ′ × k̂′)

The problem: αN and βN are defined at ω = 0, but
their influence grows with ω.
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Extrapolation wanted

• Need a systematic technique for energy dependence
at energies of interest to do ω → 0 extrapolation
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Extrapolation wanted

• Need a systematic technique for energy dependence
at energies of interest to do ω → 0 extrapolation

• Should incorporate known symmetries.

• Energy dependence should be parameterizable as,
e.g.:

AγN (ω) =
[

− (Ze)2

M
+ e2

µ
f

(

ω
µ

)

+ 4παhighω
2 + . . .

]

ǫ′ · ǫ

where f
(

ω
µ

)

is a calculable non-analytic function, µ is

a low-energy scale, i.e. ω/µ ∼ 1.
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Extrapolation wanted

• Need a systematic technique for energy dependence
at energies of interest to do ω → 0 extrapolation

• Should incorporate known symmetries.

• Energy dependence should be parameterizable as,
e.g.:

AγN (ω) =
[

− (Ze)2

M
+ e2

µ
f

(

ω
µ

)

+ 4παhighω
2 + . . .

]

ǫ′ · ǫ

where f
(

ω
µ

)

is a calculable non-analytic function, µ is

a low-energy scale, i.e. ω/µ ∼ 1.

• Whole AγN test of low-energy QCD dynamics
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EFTs and low-energy scales
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mρ Three possible EFTs:

• EFT( 6π): ω < mπ;

• χPT ( 6∆): ω ∼ mπ < ∆;

• χPT + ∆: ω ∼ ∆ < mρ

Each of these EFTs is model-independent and
systematically improvable within its domain of
applicability

Each can be applied in A=1 AND A=2 (and A=3 . . . )
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χPT ( 6∆)

L(N, γ, π) constrained by (approximate) SU(2)L × SU(2)R

of QCD.
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L(N, γ, π) constrained by (approximate) SU(2)L × SU(2)R

of QCD.

χPT is the most general L(N, π, γ) consistent with the
symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

P ≡ p,mπ

mρ,4πfπ

p/M expansion employed: (usually) useful, not essential.

Unknown coefficients at a given order need to be
determined.
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χPT ( 6∆)

L(N, γ, π) constrained by (approximate) SU(2)L × SU(2)R

of QCD.

χPT is the most general L(N, π, γ) consistent with the
symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

P ≡ p,mπ

mρ,4πfπ

p/M expansion employed: (usually) useful, not essential.

Unknown coefficients at a given order need to be
determined.

χPT without explicit ∆ ⇒ ω, |q| < ∆
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Power counting inχPT( 6∆)

• P n for a vertex with n powers of p or mπ: L(n);

• P−2 for each pion propagator: 1
q2−m2

π

;

• P−1 for each nucleon propagator: 1
p0−p2/(2M)

;

• P 4 for each loop:
∫

d4k;
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Power counting inχPT( 6∆)

• P n for a vertex with n powers of p or mπ: L(n);

• P−2 for each pion propagator: 1
q2−m2

π

;

• P−1 for each nucleon propagator: 1
p0−p2/(2M)

;

• P 4 for each loop:
∫

d4k;

Power counting for loops as well as for L
⇒ AγN =

∑

n Fn

(

p
mπ

)

P n,

Fn has non-analytic pieces from pion loops, and constant

pieces from “short-distance physics” (∆, ρ, M-branes, . . . )
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Nucleon Compton Scattering inχPT

O(e2) : �

O(e2P ) :���

���

−e2

M
ǫ′ · ǫ

Powell X-Sn +
non-analyticity
from loops
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Nucleon Compton Scattering inχPT

O(e2) : �

O(e2P ) :���

���

−e2

M
ǫ′ · ǫ

Powell X-Sn +
non-analyticity
from loops

Matching to a polynomial in ω yields

αN =
5e2g2

A

384π2f2
πmπ

= 12.2 × 10−4 fm3; βN = 1.2 × 10−4 fm3.
Bernard, Kaiser, Meißner (1992)

PDG average:
αp = (12.0 ± 0.7) × 10−4 fm3;
βp = (1.6 ± 0.6) × 10−4 fm3.
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N2LO: O(e2P 2)

γN amplitude at O(e2P 2)

���
J. McGovern, Phys. Rev. C 63, 064608 (2001)
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N2LO: O(e2P 2)

γN amplitude at O(e2P 2)

���
J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance pieces of polarizabilities should be fit:

4παhighE
2, 4πβhighB

2 ∼ ω2e2
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N2LO: O(e2P 2)

γN amplitude at O(e2P 2)

���
J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance pieces of polarizabilities should be fit:

4παhighE
2, 4πβhighB

2 ∼ ω2e2

Experiments: SAL/Illinois, LEGS, MAMI, . . . .
Kinematic restriction (∆-less χPT): ω,

√

|t| ≤ 180 MeV.
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Results
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αp = (12.1 ± 1.1)+0.5
−0.5 × 10−4 fm3

βp = (3.4 ± 1.1)+0.1
−0.1 × 10−4 fm3

S. R. Beane, J. McGovern, M. Malheiro, D. P., U. van Kolck, PLB, 567, 200 (2003).
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Going higher for γp

Breakdown set by first omitted mass scale: ∆ ≡M∆ −MN .

L(N, π) → L(N, π,∆µ)

� � � �
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Going higher for γp

Breakdown set by first omitted mass scale: ∆ ≡M∆ −MN .
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Λ ∼ ∆
Λ ≡ ǫ

“Small-scale expansion” (Hemmert, Holstein, et al.)
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Going higher for γp

Breakdown set by first omitted mass scale: ∆ ≡M∆ −MN .

L(N, π) → L(N, π,∆µ)
mπ

Λ ∼ ∆
Λ ≡ ǫ

“Small-scale expansion” (Hemmert, Holstein, et al.)

R. Hildebrandt, H. Grießhammer, T. Hemmert, B. Pasquini, Eur. Phys. J.A20, 293 (2004).

Incorporate O(e2ǫ) effects:

� � � �
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Going higher for γp

Breakdown set by first omitted mass scale: ∆ ≡M∆ −MN .

L(N, π) → L(N, π,∆µ)
mπ

Λ ∼ ∆
Λ ≡ ǫ

“Small-scale expansion” (Hemmert, Holstein, et al.)

R. Hildebrandt, H. Grießhammer, T. Hemmert, B. Pasquini, Eur. Phys. J.A20, 293 (2004).

Incorporate O(e2ǫ) effects:

� � � �

Also add (isoscalar) counterterms δαhighE
2 + δβhighB

2
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Fitting to higher energies
R. Hildebrandt et al., Eur. Phys. J.A20, 293 (2004).
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Fitting to higher energies
R. Hildebrandt et al., Eur. Phys. J.A20, 293 (2004).

Fit to γp data with ω < 200 MeV

αp = (11.04 ± 1.3 ± 1.0) × 10−4 fm3

βp = (2.76 ∓ 1.3 ± 1.0) × 10−4 fm3

Baldin Sum Rule constraint used here
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γp: Conclusions

• ’Complete one-loop’ χPT( 6∆) computation of Aγp

exists, describes data for ω,
√

|t| < 180 MeV.
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γp: Conclusions

• ’Complete one-loop’ χPT( 6∆) computation of Aγp

exists, describes data for ω,
√

|t| < 180 MeV.

• FIt to higher energies possible if Delta(1232) degrees
of freedom included

• Resonance region can also be treated, via modification
to ’Small-scale expansion’ Pascalutsa, D. P., 2003

• αp = (12.1 ± 1.1)+0.5
−0.5 × 10−4 fm3;

βp = (3.4 ± 1.1)+0.1
−0.1 × 10−4 fm3

• Measurement of Σ at HIγS → information on βp?

• Issues with experimental database: can χPT help?
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What about the neutron?

• Dominant pion-cloud mechanism isoscalar → αp ≈ αn?
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N∆

∆
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What about the neutron?

• Dominant pion-cloud mechanism isoscalar → αp ≈ αn?

• Dominant Delta(1232) effect also isoscalar, but should

be large βp ≈ βn ∼ 2
µ2

N∆

∆
≈ 10 × 10−4 fm3

• Apparently mostly cancelled by O(e2ǫ2) πN loops for βp

• Measurements of βn give information on
isospin-dependence of pion-cloud dynamics.

• Measure αn, βn: focus on γd scattering here

• Use elastic cross γd section not quasi-free γd → γnp:
exploit quantum coherence!
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Compton scattering on deuterium

Want to determine αN and βN . Naive idea:

� +

�
Aγp Aγn

�
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Compton scattering on deuterium

Want to determine αN and βN . Naive idea:

� +

�
Aγp Aγn

INCORRECT

�
Possible to extract αN and βN from γd→ γd data,

but need to treat 2B effects SYSTEMATICALLY.
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γd experiments
• Illinois (1994): M. Lucas, Ph.D. thesis, ω = 49, 69 MeV;

• SAL (2000): D. Hornidge et al., PRL 84, 2334 (2000), ω = 85 − 105 MeV;

• Lund (2003): M. Lundin et al., PRL 90, 192501 (2003), ω = 55, 65 MeV.

D. Hornidge, PhD thesis (1999)
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Reactions on deuterium
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Reactions on deuterium

〈ψ|Ô|ψ〉
|ψ〉: from chiral NN potential, or from a potential model.
Ô: also has a χPT expansion. (Weinberg, van Kolck)
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Reactions on deuterium

〈ψ|Ô|ψ〉
|ψ〉: from chiral NN potential, or from a potential model.
Ô: also has a χPT expansion. (Weinberg, van Kolck)

Should be model independent, systematically improvable,

accurate at low momentum/energy transfer.
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Deuteron wave functions
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Same at long range:
B, AS , AD , fπNN , mπ .
Some differences at
two-pion range.
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γd in χPT to O(e2P )

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

O(e2) :�

O(e2P ) :���

���
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γd in χPT to O(e2P )

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

O(e2) :�
O(e2P ) :���

���

INT Neutron Physics Program, Institute for Nuclear Theory, March 2007 – p.20/35



γd in χPT to O(e2P )

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

O(e2) :�
O(e2P ) :���

���

No free parameters at O(e2P ) ⇒ PREDICTION
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Results: I
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A couple of problems
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A couple of problems
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• Shape at
|q| ≈ 150 MeV

• Wave-function
dependence
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γd scattering atO(e2P 2)

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, PLB (2003) & NPA (2005)

��

INT Neutron Physics Program, Institute for Nuclear Theory, March 2007 – p.23/35



γd scattering atO(e2P 2)

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, PLB (2003) & NPA (2005)

1. γN amplitude at O(e2P 2);

��

INT Neutron Physics Program, Institute for Nuclear Theory, March 2007 – p.23/35



γd scattering atO(e2P 2)

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, PLB (2003) & NPA (2005)

1. γN amplitude at O(e2P 2); boosted to γd c.m. frame.

��

INT Neutron Physics Program, Institute for Nuclear Theory, March 2007 – p.23/35



γd scattering atO(e2P 2)

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, PLB (2003) & NPA (2005)

1. γN amplitude at O(e2P 2); boosted to γd c.m. frame.

2. γd two-body pieces at O(e2P ).

��

INT Neutron Physics Program, Institute for Nuclear Theory, March 2007 – p.23/35



γd scattering atO(e2P 2)

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, PLB (2003) & NPA (2005)
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3. γd two-body pieces at O(e2P 2).
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γd scattering atO(e2P 2)

S. R. Beane, M. Malheiro, J. McGovern, D. P., U. van Kolck, PLB (2003) & NPA (2005)

1. γN amplitude at O(e2P 2); boosted to γd c.m. frame.

2. γd two-body pieces at O(e2P ).

3. γd two-body pieces at O(e2P 2).

��

Calculable in terms of fπ, gA, κV , mπ, and M .

Only free parameters are αN and βN .
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Best-fit results
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• Convergence
good

• O(e2P ) prob-
lems persist
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• Convergence
good

• O(e2P ) prob-
lems persist

αN = (13.0 ± 1.9)+3.9
−1.5 × 10−4 fm3

βN = (−1.8 ± 1.9)+2.1
−0.9 × 10−4 fm3
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Dependence of cross section on|ψ〉
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γd with an explicit Delta(1232)
R. Hildebrandt, H. Grießhammer, T. Hemmert, D.P., Nucl. Phys. A (2005)

• Calculation to O(e2ǫ) in χPT with Delta(1232)

• αhigh and βhigh promoted by one order, use values from
fit to γp scattering

INT Neutron Physics Program, Institute for Nuclear Theory, March 2007 – p.26/35



γd with an explicit Delta(1232)
R. Hildebrandt, H. Grießhammer, T. Hemmert, D.P., Nucl. Phys. A (2005)

• Calculation to O(e2ǫ) in χPT with Delta(1232)

• αhigh and βhigh promoted by one order, use values from
fit to γp scattering

25 50 75 100 125 150 175
Θlab @degD

5

10

15

20

25

Hd
Σ
�
d
W
L l

ab
@n

bD

Ωlab=69 MeV

25 50 75 100 125 150 175
Θlab @degD

2.5

5

7.5

10

12.5

15

17.5

20

Hd
Σ
�
d
W
L l

ab
@n

bD

Ωlab=94.2 MeV

INT Neutron Physics Program, Institute for Nuclear Theory, March 2007 – p.26/35



γd with an explicit Delta(1232)
R. Hildebrandt, H. Grießhammer, T. Hemmert, D.P., Nucl. Phys. A (2005)
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Prediction at O(e2ǫ)
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Going to low energies

���
(a) (b) (c)

In EFT( 6π) (b) and (c) crucial for recovery of
T (ω = 0) = − e2

Md

ǫ′ · ǫ
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Going to low energies

���
(a) (b) (c)

In EFT( 6π) (b) and (c) crucial for recovery of
T (ω = 0) = − e2

Md

ǫ′ · ǫ
Also crucial is to use: 1

ω−p2/M
NOT 1

ω

• Modification of power-counting needed for ω ∼ m2
π/M ;

• Estimates ⇒ significant at 49 and 55 MeV. Higher
order at 95 MeV.
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The solution
Hildebrandt, Grießhammer, Hemmert, nucl-th/0512063
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The solution
Hildebrandt, Grießhammer, Hemmert, nucl-th/0512063

How is Thomson limit repaired?
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The benefits of clean living
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The benefits of clean living

αN = (11.3 ± 0.7 ± 0.6) × 10−4 fm3

βN = (3.2 ± 0.7 ∓ 0.6) × 10−4 fm3

Theoretical uncertainty
much smaller now
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γd at MAX-Lab
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Conclusions:γd

• O(e2P ) [NLO]: Parameter-free predictions.√
ω ≤ 80 MeV.
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Conclusions:γd

• O(e2P ) [NLO]: Parameter-free predictions.√
ω ≤ 80 MeV.

• O(e2P 2) [N2LO]: Extraction of αN and βN

• Delta(1232) d.o.f. important for ω,
√

|t| ∼> 150 MeV

• Wave-function dependence and Thomson limit
problems now solved

• No evidence for significant αv, βv in present data

• Forthcoming data set from MAX-Lab will quadruple
world data set on γd scattering

Thanks to the U.S. Department of Energy for support.
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Naive dimensional analysis forÔ
• P n for a vertex with n powers of p or mπ: L(n);

• P−2 for each pion propagator: 1
q2−m2

π

;

• P−1 for each NN propagator: 1
E−p2/M

;

• P 4 for each loop:
∫

d4k;

• P 3 for a two-body diagram: δ(3)(p′2 − p2) absent.
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Naive dimensional analysis forÔ
• P n for a vertex with n powers of p or mπ: L(n);

• P−2 for each pion propagator: 1
q2−m2

π

;

• P−1 for each NN propagator: 1
E−p2/M

;

• P 4 for each loop:
∫

d4k;

• P 3 for a two-body diagram: δ(3)(p′2 − p2) absent.

Loops, many-body effects, and vertices from L(2,3)

etc. suppressed by powers of P .
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Baldin Sum Rule
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With Baldin Sum Rule constraint:
αp + βp = (13.8 ± 0.4) × 10−4 fm3
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Baldin Sum Rule
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With Baldin Sum Rule constraint:
αp + βp = (13.8 ± 0.4) × 10−4 fm3

αp = (11.0 ± 0.5 ± 0.2)+0.5
−0.5 × 10−4 fm3;

βp = (2.8 ± 0.5 ∓ 0.2)+0.1
−0.1 × 10−4 fm3
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Cutoff dependence ofγp fit
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Energy dependence ofTγN?
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Energy dependence ofTγN?
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