
Big Bang Nucleosynthesis 
and Constraints on the Variation 

of Fundamental Couplings

• BBN and the WMAP determination of η, ΩBh2 

• Observations and Comparison with Theory
               - D/H   - 4He    - 7Li
• Cosmic-ray nucleosynthesis

 -   6,7L    -  BeB
• Variations of Fundamental parameters

• Sensitivity to BBN
- ΔmN   - τn   BD

               



WMAP best fit 
(WMAPext + 2dFGRS + 

Lyman α +running sp. 
index )

η10 = 6.12 ± 0.25
ΩBh2 = 0.0223 ± 0.0009



BBN Theory

Conditions in the Early Universe:

T >
∼ 1 MeV

ρ = π2

30(2 + 7
2 + 7

4Nν)T 4

η = nB/nγ ∼ 10−10

β-Equilibrium maintained by
weak interactions

Freeze-out at ∼ 1 MeV determined by the
competition of expansion rate H ∼ T 2/Mp and
the weak interaction rate Γ ∼ G2

FT 5

n + e+
↔ p + ν̄e

n + νe ↔ p + e−

n ↔ p + e− + ν̄e

At freezeout n/p fixed modulo free
neutron decay, (n/p) $ 1/6 → 1/7

BBN Theory

Conditions in the Early Universe:

T >
∼ 1 MeV

ρ = π2

30(2 + 7
2 + 7

4Nν)T 4

η = nB/nγ ∼ 10−10

β-Equilibrium maintained by
weak interactions

Freeze-out at ∼ 1 MeV determined by the
competition of expansion rate H ∼ T 2/Mp and
the weak interaction rate Γ ∼ G2

FT 5

n + e+
↔ p + ν̄e

n + νe ↔ p + e−

n ↔ p + e− + ν̄e

At freezeout n/p fixed modulo free
neutron decay, (n/p) $ 1/6 → 1/7



BBN Theory

Conditions in the Early Universe:
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Nucleosynthesis Delayed
(Deuterium Bottleneck)

p + n →D+γ Γp ∼ nBσ

p + n ←D+γ Γd ∼ nγσe−EB/T

Nucleosynthesis begins when Γp ∼ Γd

nγ

nB
e−EB/T ∼ 1 @ T ∼ 0.1 MeV

All neutrons → 4He

with mass fraction

Yp =
2(n/p)

1 + (n/p)
$ 25%

Remainder:

D, 3He ∼ 10−5 and 7Li ∼ 10−10 by number
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modifies this approach, keeping the same exponential dependence, but changes from a power law

in T 1/3

9 to a power law in T9: exp(a′/T 1/3

9 )(
∑

j c′jT
j
9 ). The main reason for the form of their fit is

to get fast convergence to the numerical data. In some cases (e.g. 3He(d, n)4He and 7Li(p,α)4He)

additional factors are used to improve the fit to the numerical results.

Table 1: Key Nuclear Reactions for BBN

Source Reactions

NACRE d(p, γ)3He

d(d, n)3He

d(d, p)t

t(d, n)4He

t(α, γ)7Li
3He(α, γ)7Be
7Li(p,α)4He

SKM p(n, γ)d
3He(d, p)4He
7Be(n, p)7Li

This work 3He(n, p)t

PDG τn

As noted above, some of the rates are not provided by NACRE. In these cases, the SKM rates

as indicated in Table 1 are used. One of these, 7Be(n, p)7Li, is a n-capture reaction for which a

large amount of data is available. The deuteron-induced reaction (3He(d, p)4He), is fit as a charged

particle reaction using the Caughlan & Fowler prescription, as discussed in the previous paragraph.

Several reactions deserve special mention. As noted by SKM and emphasized recently by

Nollett & Burles (2000), the p(n, γ)d reaction suffers from a lack of data in the BBN energy

range. Also, p(n, γ)d has only 4 data points (not available when SKM did their study) in the

relevant energy range ! 1 MeV. Fortunately, this reaction is well-described theoretically. Here we

follow both SKM and Nollett & Burles, by adopting the theoretical cross sections of Hale et al.

(1991), which provide an excellent fit to the four available data points by Suzuki (1995) and Nagai

(1997). Nevertheless, despite the present agreement between theory and data, the importance of

this reaction–which controls the onset of nucleosynthesis–demands that the theoretical cross section

fit be further tested by accurate experiment. We urge further investigation of this reaction.

Since SKM, Brune et al. (1999) have added new and very precise data for 3He(n, p)t (see Figure

1a).1 This has greatly reduced the uncertainty in this reaction. In order to use these data, we have

refit the R factor in the manner of SKM and Brune et al., using a third order polynomial in v and

1Note that in all figures having logarithmic vertical scales, errors have been properly propagated to reflect the log

nature of the plot.

(a)

(b)

(c)
(d)

NACRE
Cyburt, Fields, KAO

Nollett & Burles
Coc et al.







• Production of the Light Elements:  D, 3He, 4He, 7Li

• 4He observed in extragalctic HII regions:
         abundance by mass = 25%

• 7Li observed in the atmospheres of dwarf halo stars:

         abundance  by number = 10-10

• D observed in quasar absorption systems (and locally):

         abundance by number = 3 x 10-5

• 3He in solar wind, in meteorites, and in the ISM:

         abundance by number = 10-5

Big Bang Nucleosynthesis



D/H
• All Observed D is Primordial!

• Observed in the ISM and inferred from 
meteoritic samples (also HD in Jupiter)

• D/H observed in Quasar Absorption systems



Q2206-199

Q0347-3819Q1243+3047

PKS1937-1009

D/H abundances in
Quasar apsorption 

systems 



D/H
• D/H observed in Quasar Absorption systems

• Is the dispersion real?

• Is there a correlation with α/H?

• Is there a correlation with density?

Evidence for evolution?

Fields, et al.





4He
Measured in low metallicity extragalactic HII 

regions (~100)  together with O/H and N/H

YP = Y(O/H → 0)

0.00

0.20

0.40

0.60

0.80

1.00

Y

0 50 100 150 200

10 6 O/H

4He is Primordial!





• 0.228 ± 0.005                                        Pagel etal
                                                             S II densities
• 0.244 ± 0.002                                        Izotov etal

                                                           “self consistent”
• 0.238 ± 0.002                                       Fields & KAO

                                                            S II densities
• 0.234 ± 0.003                                       Peimbert etal                                            

                                                           “self consistent” 
(the latter is based on a single careful measurement of          

Y = 0.240 ± 0.002 for the SMC at [O/H ] = -.8) 
• 0.2384 ± 0.0025                                  Peimbert etal    
                                                               “self consistent”
•  0.2421 ± 0.0021                                  Izotov etal

                                                           “self consistent”
•  0.2491 ± 0.0091                               KAO & Skillman

                                                          “self consistent”
There is clearly some underlying systematics which must be 

sorted out!



derived from the He i k7065 emission line is also uncertain
because of its high sensitivity to collisional and fluorescent
enhancements. Therefore, because they are less influenced by
the aforementioned effects, the He abundances derived by
using only the three He i kk4471, 5876, and 6678 emission
lines for the IT98b galaxies are much more consistent with
those for the new galaxies.

The parameters of the linear regression fits for the old and
(old+new) samples are given in Table 6. We also show the

dispersions ! of Y about the regression lines. The first row of
Table 6 gives the parameters for the IT98b sample of 45 H ii
regions, for which we have recalculated He abundances with
the Benjamin et al. (2002) equations. The primordial He
abundance derived from the Y-O/H relation is Yp ¼ 0:245"
0:002, slightly larger than the value of 0:244 " 0:002 obtained
by IT98b for the same sample with the ITL97b and IT98b
expressions for collisional and fluorescent enhancements of
He i emission lines. The higher Yp value is mainly the

TABLE 6

Maximum Likelihood Linear Regressions

Oxygen Nitrogen

Method
Number of H ii

Regions Regression ! Regression !

Three He i linesa,b....... 45 0.2451" 0.0018 + 21" 21(O/H) 0.0048 0.2452" 0.0012 + 603" 372(N/H) 0.0044

Three He i linesb......... 89 0.2429" 0.0009 + 51" 9(O/H) 0.0040 0.2439" 0.0008 + 1063" 183(N/H) 0.0037

Five He i linesc,d ......... 7 0.2421" 0.0021 + 68" 22(O/H) 0.0035 0.2446" 0.0016 + 1084" 442(N/H) 0.0040

Five He i linesc,e ......... 7 0.2444" 0.0020 + 61" 21(O/H) 0.0040 0.2466" 0.0016 + 954" 411(N/H) 0.0044

a Data are from IT98b.
b Only collisional and fluorescent enhancements are taken into account. We have adopted TeðHe iiÞ ¼ TeðO iiiÞ and ICFðHeÞ ¼ 1.
c Collisional and fluorescent enhancements of the He i lines, collisional excitation of hydrogen lines, underlying He i stellar absorption, and differences

between Te(He ii) and Te(O iii) are taken into account. ICF(He) is set to 1.
d Calculated with EWaðH8þ He i k3889Þ ¼ 3:0 Å, EWaðHe i k4471Þ ¼ 0:4 Å, EWaðHe i k5876Þ ¼ 0:3EWaðHe i k4471Þ, EWaðHe i k6678Þ ¼

EWaðHe i k7065Þ ¼ 0:1EWaðHe i k4471Þ.
e Calculated with EWaðH8þ He i k3889Þ ¼ 3:0 Å, EWaðHe i k4471Þ ¼ 0:5 Å, EWaðHe i k5876Þ ¼ 0:3EWaðHe i k4471Þ, EWaðHe i k6678Þ ¼

EWaðHe i k7065Þ ¼ 0:1EWaðHe i k4471Þ.

Fig. 2.—Linear regressions of the helium mass fraction Y vs. oxygen and nitrogen abundances for a total of 82 H ii regions in 76 BCGs. In (a) and (b), Y was
derived using the three kk4471, 5876, and 6678 He i lines, and in (c) and (d ), Y was derived using the five kk3889, 4471, 5876, 6678, and 7065 He i lines.

PRIMORDIAL ABUNDANCE OF 4He AND dY/dZ 223No. 1, 2004
4He

Izotov & Thuan

Yp = 0.2421 ± 0.0021  



Method:

• Intensity and Eq. Width for H and He

• Determine H reddening and underlying absorption

• Use 6 He emission lines to determine physical 
parameters:
-  denisty, optical depth, temperature, underlying He 

absorption,  4He abundance

• Severe degeneracies revealed by Monte Carlo 
anaysis
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Li/H
Measured in low metallicity dwarf halo stars 
(over 100 observed)
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Li Woes

• Observations based on

-  “old”: Li/H = 1.2 x 10-10    Spite & Spite + 
- Balmer:  Li/H = 1.7 x 10-10    Molaro, Primas & Bonifacio
- IRFM: Li/H = 1.6 x 10-10      Bonifacio & Molaro
- IRFM: Li/H = 1.2 x 10-10  Ryan, Beers, KAO, Fields, Norris

- Hα (globular cluster): Li/H = 2.2 x 10-10      Bonifacio et al.

- Hα (globular cluster): Li/H = 2.3 x 10-10      Bonifacio

- λ6104: Li/H ~ 3.2 x 10-10      Ford et al.

• Li depends on T, ln g, [Fe/H], depletion, post 
BBN-processing, ...

• Strong systematics





Possible sources for the discrepancy

• Stellar Depletion
- lack of dispersion in the data, 6Li abundance
- standard models (< .05 dex), models (0.2 - 0.4 dex) 

• Nuclear Rates

- Restricted by solar neutrino flux

• Stellar parameters 

dLi

dlng
=

.09

.5

dLi

dT
=

.08

100K

Coc et al.
Cyburt, Fields, KAO

Vauclaire & Charbonnel
Pinsonneault et al.

Richard, Michaud, Richer



Possible sources for the discrepancy

• Nuclear Rates

- Restricted by solar neutrino flux

• Stellar parameters 

• Particle Decays

dLi

dlng
=

.09

.5

dLi

dT
=

.08

100K

Coc et al.
Cyburt, Fields, KAO
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Reappraising the Spite Lithium Plateau: Extremely Thin and

Marginally Consistent with WMAP

Jorge Meléndez1 and Iván Ramı́rez2

ABSTRACT

The lithium abundance in 62 halo dwarfs is determined from accurate equiv-

alent widths reported in the literature and an improved infrared flux method
(IRFM) temperature scale. The Li abundance of 41 plateau stars (those with

Teff > 6000 K) is found to be independent of temperature and metallicity, with
a star-to-star scatter of only 0.06 dex over a broad range of temperatures (6000
K < Teff < 6800 K) and metallicities (−3.4 < [Fe/H] < −1), thus imposing

stringent constraints on depletion by mixing and production by Galactic chemi-
cal evolution. We find a mean Li plateau abundance of ALi = 2.37 dex (7Li/H

= 2.34 ×10−10), which, considering errors of the order of 0.1 dex in the absolute
abundance scale, is just in borderline agreement with the constraints imposed

by the theory of primordial nucleosynthesis and WMAP data (2.51 < AWMAP
Li <

2.66 dex).

Subject headings: cosmology: observations - stars: abundances - stars: Popula-
tion II

1. Introduction

The Li plateau was discovered by Spite & Spite (1982), who showed that the 7Li abun-
dance obtained from the Li doublet at 6708 Å in F and early G halo dwarfs is independent

of temperature and metallicity, suggesting that the Li abundance determined in halo stars
represents the primordial abundance from Big Bang nucleosynthesis (BBN). The standard

1Department of Astronomy, Caltech, M/C 105-24, 1200 E. California Blvd, Pasadena, CA 91125;
jorge@astro.caltech.edu

2Department of Astronomy, University of Texas at Austin, RLM 15.306, TX 78712-1083;
ivan@astro.as.utexas.edu

New evaluation of surface temperatures
in 41 halo stars with systematically higher
temperatures (100-300 K) 

[Li] = 2.37 ± 0.1
Li/H = 2.34 ± 0.54 x 10-10
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Fig. 2.— Temperatures obtained in this work minus the temperatures from R01 (for stars
in common with the present sample) as a function of the metallicities adopted in the present

work. Filled circles: plateau stars (Teff > 6000 K); open circles: stars with Teff < 6000 K.





For η10 ≈  6

6Li/H  ≈  10-14 
              9Be/H  ≈  0.5 - 5 × 10-19  

         10B/H  ≈  2 × 10-20  
       11B/H  ≈  3 × 10-16 

Far Below the observed values in Pop II stars

 6Li/H  ≈  few   × 10-12 
 9Be/H  ~ 1 -10 × 10-13        B/H  ~ 1 - 10 × 10-12     

These are not BBN produced.

  GCR Nucleosynthesis

6LiBeB





6Li

LiBeB Data

7Li:
7Li/H = 1.6 ±0.1 × 10−10

[Li] = (1.28 ± .43) + (.015 ± .007) T

100

[Li] = (2.17 ± .07) + (-.018 ± .031) [Fe/H]

Dispersion consitent with Observational errors

6Li (@ [Fe/H] ∼ −2.3):

HD 84937: 6Li/Li = 0.054 ± 0.011
BD 26o3578: 6Li/Li = 0.05 ± 0.03

SLN

Hobbs & Thorburn

Cayrel etal

1

In the happy but not too distant past:

cf. BBN abundance of about 6Li/H = 10-14 
or 6Li/Li  < 10-4



These data nicely accounted for by Galactic 
Cosmic Ray Nucleosynthesis

Fields and Olive
Vangioni et al.



Problem 2: There appears to be a 6Li plateau

Li/H

6Li/H

lo
g 

(6 L
i/H

), 
 lo

g 
(L

i/H
)

[Fe/H] 
Data from Asplund et al and Inoue



GCRN production of 
Be and B

including primary and 
secondary sources



Possible Solution: Cosmological Cosmic Rays
(to problem two only)

• Cosmic Chemical Evolution
• Early Reionization and Massive Stars
•  Cosmic Ray Production and Propagation in an  expanding Universe

Rollinde. Vangioni, Olive

lo
g 

(6 L
i/H

), 
 lo

g 
(L

i/H
)

Li/H

6Li/H

[Fe/H] 



Summary

• D, He are ok -- issues to be resolved

• Li: 2 Problems
- BBN 7Li high compared to observations
- BBN 6Li low compared to observations  

6Li plateau?
• Important to consider:
- Depletion
- Li Systematics - T scale
- Particle Decays? 
- PreGalactic production of 6Li 
- Tie in to Be and B production



How does a Fundamental
Constant Change?

L ∼ φR 〈φ〉 = 1
16πGN

= M2
P

16π

L ∼ φF 2 〈φ〉 = 1
4e2 = 1

16πα

Does this ever happen?

e.g. JBD Theory

S =
∫

d4x
√

g
[

φR − ω
φ∂µφ∂µφ + Lm

]

Lm = − 1
4e2F 2 − 1

2∂µy∂µy − V (y)

−Ψ #DΨ − mΨΨ + Λ



with a conformal rescaling,

S =
∫

d4x
√

g
[

R − (ω + 3
2)

(∂µφ)2

φ2

−1
2

(∂µy)2

φ − V (y)
φ2 − Ψ#DΨ

φ3/2

−mΨΨ
φ2 − 1

4e2F 2 + Λ
φ2

]

now, Mp(GN), and α are fixed but
particle masses scale with φ,

m ∼ 1/φ1/2

the same is true for the Higgs expectation value,

GF ∼ 1
v2 ∼ 1/φ

Also true in String theory

α ∼ eaφ Λ ∼ e−aφ m ∼ e−aφ/2





Murphy et al.

Keck/HIRES data
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Fig. 14. Results from the UVES sample: χ2 is plotted as a function of ∆α/α for each system in our sample. The
minima of the curve (marked with a dot) gives the best fitted value ∆α/α . The error in the measurement (error bar
around the dot) is derived using ∆χ2 = 1. Name of QSOs and redshifts zabsare given in each panel. The vertical dotted
line in each panel marks the location of ∆α/α = 0. It is interesting to note that most of the systems are consistent
with ∆α/α = 0 within error bars. Two of the systems zabs= 1.5864 toward HE0001−2340 and zabs= 0.7627 toward
Q 0329−385 are not considered in the analysis as the only two components in these systems are blended as per our
definision.

A summary of the results for different sub-samples are
given in Table 5. The sample identification is given in the
first column. Number of systems used and the median red-
shift of the sample are given in column #2 and #3. The
mean, weighted mean and σ of the measured ∆α/α val-
ues are given in columns #4, #5 and #6 respectively. Last
column gives the reduced χ2

W
obtained from all our mea-

surements for the measured weighted mean. It can be seen
that in none of our subsamples we find a significant change
in α.

6.3. The magnesium isotopic abundance

One major uncertainty in the many-multiplet analysis
comes from the determination of the effective rest wave-

lengths. Even though laboratory wavelengths are mea-
sured with a precision of a few 0.1 mÅ, values given
in Table. 1 assume terrestrial isotopic abundances. This
assumption may not be valid at high redshift. In the
Astrophysical settings the effect of isotopic shifts could
be important for Si and Mg (see Murphy et al. 2003,
Ashenfelter et al. 2003). Indeed, the relative abundances
of different isotopes may depend on the overall metallic-
ity of the gas. Gay & Lambert (2000) have shown that
the abundance of 25Mg and 26Mg relative to 24Mg de-
creases with decreasing metallicity. In the low metallicity
gas (Z ≤ 0.01Z!) most of the metals will be in their dom-
inant isotopic state. Thus in the extreme case of very low
metallicity, the effective rest wavelengths could take val-
ues in the range from terrestrial composite wavelength to

22 Hum Chand, Raghunathan Srianand, Patrick Petitjean & Bastien Aracil: fine-structure constant

Fig. 15. Results from the UVES sample: The measured values of ∆α/α from our sample (filled circles) are plotted
against the absorption redshifts of Mg ii systems. Each point is the best fitted value obtained for individual systems us-
ing χ2 minimization as demonstrated in Fig. 14. The open circle and stars are the measurement from Oklo phenomenon
and from molecular lines respectively. The weighted mean and 1σ range measured by Murphy et al.(2003) are shown
with the horizontal long dashed lines. Clearly most of our measurements are inconsistent with this range. The shadow
region marks the weighted mean and its 3σ error obtained from our study [< ∆α/α >w = (−0.06 ± 0.06) × 10−5].
Our data gives a 3σ constraint on the variation of ∆α/α to be −2.5× 10−16 yr−1 ≤ (∆α/α∆t) ≤ 1.2× 10−16 yr−1 in
the case of flat universe with Ωλ = 0.7, Ωm = 0.3 and H0 = 68 km s−1Mpc−1 for the median redshift of 1.55.

wavelengths corresponding to the dominant isotope. This
range is less than 0.5 mÅ for Mg i and Si ii absorption
lines but is of the order of 1 mÅ for Mg ii lines. In or-
der to accommodate this uncertainty we fit the systems
using the wavelengths of the species from the dominant
isotope. The measurements are given in the last column
of Table 3. As expected, using these abundances leads to
a lower α determination (see Table 5). Note however that
even in this extreme case, the variation stays smaller than
what has been claimed from previous studies. Note that
the assumption of very low metallicity is extreme as: (i)
the systems in the z range 0.4−2 are more likely to have
metallicity larger than 0.1 Z! (e.g. Ledoux et al. 2002); (ii)
the measured mean ratios of Mg24:Mg25:Mg26 in the cool

dwarf with metallicity Z = −1.5 to −1.0 Z! is 80:10:10
(from Table. 1 of Yong et al. 2003). This gives the weighted
mean wavelengths close to the terrestrial wavelengths, and
(iii) We also notice that the minimum χ2 for the fit in most
cases (apart from 4 cases) are better when we use the lab-
oratory wavelengths in our analysis. Therefore, although
some additional uncertainty and scatter could come from
the isotopic abundances being different from that of ter-
restrial composition, our result using the laboratory wave-
lengths is most probably robust.

7. Conclusion

We have applied the MM method to a homogeneous sam-
ple of 50 Mg ii systems observed along 18 QSO lines of

Chand et al.
δα

α
= (−0.06 ± 0.06) × 10−5

Newer Data*  VLT/UVES

*Recently revised by Murphy etal to δα
α

= (−0.44±0.16)×10−5



New high resolution 
measurements

dE
d!n

! jc1j2
dEB

vBJ

d!n
" jc2j2

dEC
vCJ

d!n
: (8)

All eigenstates for which we find jcij2 > 0:001, i ! 1; 2,
are treated in this way.

Another significant step beyond the BOA is made by
including the adiabatic correction, a nuclear-mass depen-
dent contribution to the electronic energy of each state,
which is a slowly varying function of internuclear distance
R on the order of 100 cm#1 in the three states of H2, and
scales with mass as / 1=!n [13]. Its effect is approxi-
mately that of the Bohr shift on the levels of an electron
bound to an H"

2 core, due to the finite mass of the latter. For
a transition with an electronic energy difference !E1 for a
core of infinite mass, the Bohr shift in the e# " H"

2 system
equals !E1 # !E ! !E=$2!" 1%. Identifying !E with
the difference of the empirical Y00 values of the (deper-
turbed) B or C state and the ground state, we obtain 25:0
and 27:2 cm#1, respectively. The mass scaling of the Bohr
shift leads to an extra term in the parentheses in Eq. (5) of
#!d=d!$!E=$2!" 1%% & !E=$2!" 2%. This semiem-
pirical treatment of the adiabatic correction leaves some
uncertainty, particularly for the B state, where it is strongly
R-dependent [13]. The resulting uncertainty is up to
'0:0005 for the high-v levels.

Calculated sensitivity coefficients Ki can be found in
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! !!
!

Ki ; (9)

where, like in Eq. (2), zq;abs are the absolute redshifts of the
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From a combined error-weighted linear regression, with
both zq;abs values as well as the fractional change of ! as fit
parameters, we find the central result of the present study:
!!=! ! $2:44' 0:59% ) 10#5. Figure 2 shows the $i
values for both quasars as a function of Ki together with
the fit result. The fit also yields accurate values for the
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FIG. 2. Linear fit to reduced redshift of quasar absorption lines
$ as defined by Eq. (9). Solid circles: Q 0347-383, z !
3:024 897 0; open circles: Q 0405-443, z ! 2:594 732 5. The
error-weighted linear fit is shown by a dashed line, the un-
weighted fit by a dotted line.
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∆µ

µ
= (2.4 ± 0.6) × 10−5

Also from quasar absorption systems:
Using molecular rotation lines (which depend on µ = mp/me)



Limits on the variations of α

• Cosmology
- BBN
- CMB

• The Oklo Reactor

• Meteoritic abundances

• Atomic clocks



BBN Concordance

Cyburt, Fields, KAO

• Concordance rests on 
balance between interaction 
rates and expansion rate.

• Allows one to set 
constraints on:
- Particle Types

- Particle Interactions

- Particle Masses 

- Fundamental Parameters



How could varying α affect BBN?

G2
FT 5 ∼ Γ(Tf) ∼ H(Tf) ∼

√
GNNT 2

f

Recall in equilibrium,

n
p ∼ e−∆m/T fixed at freezeout

Helium abundance,

Y ∼ 2(n/p)
1+(n/p)

If Tf is higher, (n/p) is higher, and Y is higher

1



Contributions to ∆Y : Kolb, Perry, and Walker

Campbell and Olive

Bergstrom, Iguri, and Rubenstein

∆Y
Y ! 1

1+n/p
∆(n/p)
(n/p)

∆(n/p)
(n/p) ! ∆mN

Tf
(
∆Tf
Tf

− ∆2mN
∆mN

)

Contributions to ∆mN :

∆mN ∼ aαemΛQCD + bv

electromagnetic weak
-0.8 MeV 2.1 MeV

Changes in α, ΛQCD, and/or v
all induce changes in ∆mN and hence Y

1



Limits:

∆Y
Y

<∼
±0.012
0.24 = ±0.05

∆(n/p)
(n/p) " ∆mN

Tf
(
∆Tf
Tf

− ∆2mN
∆mN

)

If the dominant contribution from ∆α
is in ∆mN then:

∆Y
Y " ∆2mN

∆mN
∼ ∆α

α < 0.05

If ∆α arises in a more complete theory
the effect may be greatly enhanced:

∆Y
Y " O(100)∆α

α and ∆α
α < few ×10−4

1

Campbell & Olive
see also Ichikawa & Kawaski

Nollett & Lopez



Approach:

Consider possible variation of Yukawa, h, 
or fine-structure constant, α

Include dependence of Λ on α; of v on h, etc.

Consider effects on:  Q = ΔmN, τN,  BD

Coc, Nunes, Olive, Uzan, Vangioni



Quantities of importance for BBN

• Q =  Δ mN     nucleon mass difference

• τn  neutron lifetime

3

transmutation [40], there is a relation between varia-
tions in the Yukawa couplings and variations in the Higgs
vev. Variations in the latter will also trigger variations in
ΛQCD. While the exact relation between these variations
is model dependent, the fact that they are inter-related is
not. Therefore it is inconsistent for example to consider
a variation in v without simultaneously varying Λ. We
will make use of these dependencies to study variations in
several (tractable) quantities which affect BBN. As noted
above, we can not fully evolve the variations in all nuclear
reactions, because their dependence is unknown. Here,
we will be primarily interested in the induced variations
of the nucleon mass difference, the neutron life-time, and
the binding energy of deuterium. We recognize that this
represents a limitation on our results.

Brief summary of conlusions here

II. RELATIONS BETWEEN BBN QUANTITIES
AND FUNDAMENTAL PARAMETERS

As discussed above, we will focus our attention on three
physical quantities which have direct bearing on the re-
sulting abundances from BBN, the nucleon mass differ-
ence Q = mn − mp = 1.29, the neutron lifetime τn, and
the binding energy of deuterium BD.

The neutron-proton mass difference can be expressed
in terms of α, Λ, v, and the u and d quark Yukawa cou-
plings as

Q ≡ mn − mp = a α Λ + (hd − hu) v , (4)

where the electromagnetic contribution at present is
a α0 Λ0 = −0.76, and therefore the weak contribution
is (hd0−hu0) v0 = 2.05 [41]. The variation of Q will then
scale as

∆Q

Q
= −0.6

[

∆α

α
+

∆Λ

Λ

]

+ 1.6

[

∆(hd − yu)

hd − hu
+

∆v

v

]

.

(5)
The neutron lifetime can be well approximated by

τ−1
n =

1

60

1 + 3 g2
A

2π3
G2

F m5
e

(

√

q2 − 1(2q4 − 9q2 − 8)

+15 ln(q +
√

q2 − 1)
)

, (6)

where q = Q/me. Since GF = 1/
√

2v2 and me = hev we
have for the relative variation of the neutron lifetime,

∆τn

τn
= −4.8

∆v

v
+ 1.5

∆he

he
− 10.4

∆(hd − hu)

hd − hu

+3.8

(

∆α

α
+

∆Λ

Λ

)

. (7)

In addition to Q and τn, which have been well studied
in the context of BBN, we consider the variation of BD

This is one of the better known quantities in the nuclear
domain: it is experimentally known to a precison better

than 10−6 [42] so that allowing a change of its value by
a few % at BBN can only be reconciled with laboratory
measurements if its value is varying with time.

Recently, in a series of works [26, 27, 43] Flambaum
and collaborators have considered the dependence of
hadronic properties on quark masses and have set con-
straints on the deuterium binding energy from BBN [27]
following Refs [28–30]. The importance of BD can be
understood by the fact that the equilibrium abundance
of deuterium and the reaction rate p(n, γ)d depend ex-
ponentially on BD and on the fact that the deuterium is
in a shallow bound state.

Here, we follow Refs. [27, 43] to compute the quark-
mass dependence of the deuterium binding energy. Using
a potential mode, the dependence of BD on the nucleon
mass and, σ and ω meson masses have been determined
[43]

∆BD

BD
= −48

∆mσ

mσ
+ 50

∆mω

mω
+ 6

∆mN

mN
. (8)

Taking all dimensionfull quantities proportional to Λ
we have ∆BD/BD = 8 ∆Λ/Λ. On the other hand,
fixing Λ, when varying quark masses (the largest con-
tribution comes from ms), their result is ∆BD/BD =
−17 ∆ms/ms.

The importance of the strange quark in the nucleon
and meson masses can be traced to the π-nucleon Σ term,
which is given by

σπN ≡ Σ =
1

2
(mu + md)(Bu + Bd). (9)

where

Bq ≡ 〈p|q̄q|p〉 (10)

Defining y = 2Bs/(Bu +Bd), the combination Σ(1−y) is
the change in the nucleon mass due to the non-zero u, d
quark masses, which is estimated on the basis of octet
baryon mass differences to be σ0 = 36 ± 7 MeV [44].
Following [45], we have (Bu −Bs)/(Bd −Bs) = 1.49 and
given a value of Σ, one can determine Bq. In [43], the
value Bs = 1.5 was adopted and corresponds to Σ & 51
MeV, which is a reasonable value. This corresponds to
∆mN/mN = (msBs/mN)∆ms/ms = 0.19∆ms/ms. For
these values we find a similar (though slightly larger value
for the light quark (u and d) contributions which give
∆mN/mN = 0.052∆mq/mq.

The value of Σ however has substantial uncertainties
which were recently discussed in [46]. A often used value
is Σ = 45 MeV which was already somewhat larger
than naive quark model estimates, and corresponded to
y & 0.2. However, recent determinations of the π-nucleon
Σ term have found higher values [47], Σ = 64 MeV. Still
higher values can be ascertained for the observation of ex-
otic baryons [48]. For Σ = 45 (64) MeV, Bs = 0.9 (2.8)
and ∆mN/mN = 0.12 (0.36) ∆ms/ms. The contribution
from u and d quarks is 0.046 and 0.066 respectively. A
similar calculation leads to ∆mω/mω = (0.09, 0.15, 0.29)

3

transmutation [40], there is a relation between varia-
tions in the Yukawa couplings and variations in the Higgs
vev. Variations in the latter will also trigger variations in
ΛQCD. While the exact relation between these variations
is model dependent, the fact that they are inter-related is
not. Therefore it is inconsistent for example to consider
a variation in v without simultaneously varying Λ. We
will make use of these dependencies to study variations in
several (tractable) quantities which affect BBN. As noted
above, we can not fully evolve the variations in all nuclear
reactions, because their dependence is unknown. Here,
we will be primarily interested in the induced variations
of the nucleon mass difference, the neutron life-time, and
the binding energy of deuterium. We recognize that this
represents a limitation on our results.

Brief summary of conlusions here

II. RELATIONS BETWEEN BBN QUANTITIES
AND FUNDAMENTAL PARAMETERS

As discussed above, we will focus our attention on three
physical quantities which have direct bearing on the re-
sulting abundances from BBN, the nucleon mass differ-
ence Q = mn − mp = 1.29, the neutron lifetime τn, and
the binding energy of deuterium BD.

The neutron-proton mass difference can be expressed
in terms of α, Λ, v, and the u and d quark Yukawa cou-
plings as

Q ≡ mn − mp = a α Λ + (hd − hu) v , (4)

where the electromagnetic contribution at present is
a α0 Λ0 = −0.76, and therefore the weak contribution
is (hd0−hu0) v0 = 2.05 [41]. The variation of Q will then
scale as

∆Q

Q
= −0.6

[

∆α

α
+

∆Λ

Λ

]

+ 1.6

[

∆(hd − yu)

hd − hu
+

∆v

v

]

.

(5)
The neutron lifetime can be well approximated by

τ−1
n =

1

60

1 + 3 g2
A

2π3
G2

F m5
e

(

√

q2 − 1(2q4 − 9q2 − 8)

+15 ln(q +
√

q2 − 1)
)

, (6)

where q = Q/me. Since GF = 1/
√

2v2 and me = hev we
have for the relative variation of the neutron lifetime,

∆τn

τn
= −4.8

∆v

v
+ 1.5

∆he

he
− 10.4

∆(hd − hu)

hd − hu

+3.8

(

∆α

α
+

∆Λ

Λ

)

. (7)

In addition to Q and τn, which have been well studied
in the context of BBN, we consider the variation of BD

This is one of the better known quantities in the nuclear
domain: it is experimentally known to a precison better

than 10−6 [42] so that allowing a change of its value by
a few % at BBN can only be reconciled with laboratory
measurements if its value is varying with time.

Recently, in a series of works [26, 27, 43] Flambaum
and collaborators have considered the dependence of
hadronic properties on quark masses and have set con-
straints on the deuterium binding energy from BBN [27]
following Refs [28–30]. The importance of BD can be
understood by the fact that the equilibrium abundance
of deuterium and the reaction rate p(n, γ)d depend ex-
ponentially on BD and on the fact that the deuterium is
in a shallow bound state.

Here, we follow Refs. [27, 43] to compute the quark-
mass dependence of the deuterium binding energy. Using
a potential mode, the dependence of BD on the nucleon
mass and, σ and ω meson masses have been determined
[43]

∆BD

BD
= −48

∆mσ

mσ
+ 50

∆mω

mω
+ 6

∆mN

mN
. (8)

Taking all dimensionfull quantities proportional to Λ
we have ∆BD/BD = 8 ∆Λ/Λ. On the other hand,
fixing Λ, when varying quark masses (the largest con-
tribution comes from ms), their result is ∆BD/BD =
−17 ∆ms/ms.

The importance of the strange quark in the nucleon
and meson masses can be traced to the π-nucleon Σ term,
which is given by

σπN ≡ Σ =
1

2
(mu + md)(Bu + Bd). (9)

where

Bq ≡ 〈p|q̄q|p〉 (10)

Defining y = 2Bs/(Bu +Bd), the combination Σ(1−y) is
the change in the nucleon mass due to the non-zero u, d
quark masses, which is estimated on the basis of octet
baryon mass differences to be σ0 = 36 ± 7 MeV [44].
Following [45], we have (Bu −Bs)/(Bd −Bs) = 1.49 and
given a value of Σ, one can determine Bq. In [43], the
value Bs = 1.5 was adopted and corresponds to Σ & 51
MeV, which is a reasonable value. This corresponds to
∆mN/mN = (msBs/mN)∆ms/ms = 0.19∆ms/ms. For
these values we find a similar (though slightly larger value
for the light quark (u and d) contributions which give
∆mN/mN = 0.052∆mq/mq.

The value of Σ however has substantial uncertainties
which were recently discussed in [46]. A often used value
is Σ = 45 MeV which was already somewhat larger
than naive quark model estimates, and corresponded to
y & 0.2. However, recent determinations of the π-nucleon
Σ term have found higher values [47], Σ = 64 MeV. Still
higher values can be ascertained for the observation of ex-
otic baryons [48]. For Σ = 45 (64) MeV, Bs = 0.9 (2.8)
and ∆mN/mN = 0.12 (0.36) ∆ms/ms. The contribution
from u and d quarks is 0.046 and 0.066 respectively. A
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theories, the variations of gauge couplings will be related
to variations in Yukawa couplings, and in models where
the weak scale is determined by dimensional transmu-
tation [42], there is a relation between variations in the
Yukawa couplings and variations in the Higgs vev. Varia-
tions in the latter will also trigger variations in Λ. While
the exact relation between these variations is model de-
pendent, the fact that they are interrelated is not. There-
fore it is inconsistent for example to consider a variation
in v without simultaneously varying Λ. We will make
use of these dependencies to study variations in several
(tractable) quantities which affect BBN. Coupled varia-
tions of this type were used to strengthen existing bounds
on the fine structure constant based on Oklo and mete-
oritic data [43]. As noted above, we can not fully evolve
the variations in all nuclear reactions, because their de-
pendence is unknown. Here, we will be primarily inter-
ested in the induced variations of the nucleon mass dif-
ference, the neutron life-time, and the binding energy of
deuterium. We recognize that this represents a limitation
on our results.

In section § II, we relate the variation of the BBN pa-
rameters, mainly Q, τn and BD, to the variation of the
fundamental parameters such as the Yukawa couplings,
h, the QCD energy scale, Λ, and the fine structure con-
stant, α. Section III focuses on the relations that can be
drawn between the variations of the fundamental param-
eters, taking into account successively grand unification,
dimensional transmutation and the possibility that the
variation is driven by a dilaton. In order to deal with
some of the theoretical uncertainties, we introduce two
phenomenological parameters and we then make the con-
nection with the variation of the proton to electron mass
ratio at low redshift. Section IV focuses on the BBN
computation and first describes the implementation of
the variations in our BBN code. Assuming that the fine
structure constant does not vary we show that deuterium
and 4He data set strong constraints on the variation of
the Yukawa couplings [see Eq. (35)] but that inside this
bound there exists a range reconciling the 7Li abundance
with spectroscopic observations. We then allow the fine
structure constant to vary and set a sharp constraint on
its variation in the dilaton scenario [see Eqs. (36) and
(37)].

II. FROM FUNDAMENTAL PARAMETERS TO
BBN QUANTITIES

As discussed above, we focus our attention on three
physical quantities which have direct bearing on the re-
sulting abundances from BBN, the nucleon mass differ-
ence Q = mn −mp = 1.29 MeV, the neutron lifetime τn,
and the binding energy of deuterium BD.

The neutron-proton mass difference is expressed in
terms of α, Λ, v, and the u and d quark Yukawa couplings
as

Q ≡ mn − mp = a α Λ + (hd − hu) v , (4)

where the electromagnetic contribution at present is
a α0 Λ0 = −0.76, and therefore the weak contribution
is (hd0−hu0) v0 = 2.05 [44]. The variation of Q will then
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In addition to Q and τn, which have been well stud-
ied in the context of BBN, we consider the variation of
BD. This is one of the better known quantities in the
nuclear domain: it is experimentally measured to a pre-
cision better than 10−6 [45] so that allowing a change
of its value by a few % at BBN can only be reconciled
with laboratory measurements if its value is varying with
time.

Recently, in a series of works [28, 29, 46] Flambaum
and collaborators have considered the dependence of
hadronic properties on quark masses and have set con-
straints on the deuterium binding energy from BBN [29]
following Refs. [30–32]. The importance of BD can be
understood by the fact that the equilibrium abundance
of deuterium and the reaction rate p(n, γ)D depend ex-
ponentially on BD and on the fact that the deuterium is
in a shallow bound state.

Here, we follow Refs. [29, 46] to compute the quark-
mass dependence of the deuterium binding energy. Using
a potential model, the dependence of BD on the nucleon
mass and, σ and ω meson masses have been determined
[46]
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The importance of the strange quark in the nucleon
and meson masses can be traced to the π-nucleon Σ term,
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straints on the deuterium binding energy from BBN [29]
following Refs. [30–32]. The importance of BD can be
understood by the fact that the equilibrium abundance
of deuterium and the reaction rate p(n, γ)D depend ex-
ponentially on BD and on the fact that the deuterium is
in a shallow bound state.

Here, we follow Refs. [29, 46] to compute the quark-
mass dependence of the deuterium binding energy. Using
a potential model, the dependence of BD on the nucleon
mass and, σ and ω meson masses have been determined
[46]
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Taking all dimensionfull quantities proportional to Λ
we have ∆BD/BD = 8 ∆Λ/Λ. On the other hand,
fixing Λ, when varying quark masses (the largest con-
tribution comes from ms), their result is ∆BD/BD =
−17 ∆ms/ms.

The importance of the strange quark in the nucleon
and meson masses can be traced to the π-nucleon Σ term,
which is given by

σπN ≡ Σ =
1
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(mu + md)(Bu + Bd). (9)
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FIG. 1. Predicted BBN light-element abundances vs. the
baryon-to-photon ratio η10 in units of 10−10. These are com-
pared with the observationally inferred [17] primordial abun-
dances (horizontal lines) and the independent determination
of η10 from the WMAP results (light shaded region). The
top box shows the primordial helium abundances. The insert
shows an expanded view of Yp near the allowed region. The
banded regions indicate the range of predicted Yp due to the
neutron lifetime uncertainty. The upper lines are based upon
the previous world average τn = 885.7±0.8 s. The lower lines
are based upon the new measured value of τn = 878.5± 0.8 s.
The previous allowed η10 values (shown by the dashed open
box) shifts to the dark shaded box if the new neutron lifetime
is adopted.
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FIG. 1. Predicted BBN light-element abundances vs. the
baryon-to-photon ratio η10 in units of 10−10. These are com-
pared with the observationally inferred [17] primordial abun-
dances (horizontal lines) and the independent determination
of η10 from the WMAP results (light shaded region). The
top box shows the primordial helium abundances. The insert
shows an expanded view of Yp near the allowed region. The
banded regions indicate the range of predicted Yp due to the
neutron lifetime uncertainty. The upper lines are based upon
the previous world average τn = 885.7±0.8 s. The lower lines
are based upon the new measured value of τn = 878.5± 0.8 s.
The previous allowed η10 values (shown by the dashed open
box) shifts to the dark shaded box if the new neutron lifetime
is adopted.
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• BD binding energy of deuterium

Using a potential model, 

and the dependence on Λ, by dimensional grounds, 

But there is also a dependence on quark masses.

3

theories, the variations of gauge couplings will be related
to variations in Yukawa couplings, and in models where
the weak scale is determined by dimensional transmu-
tation [42], there is a relation between variations in the
Yukawa couplings and variations in the Higgs vev. Varia-
tions in the latter will also trigger variations in Λ. While
the exact relation between these variations is model de-
pendent, the fact that they are interrelated is not. There-
fore it is inconsistent for example to consider a variation
in v without simultaneously varying Λ. We will make
use of these dependencies to study variations in several
(tractable) quantities which affect BBN. Coupled varia-
tions of this type were used to strengthen existing bounds
on the fine structure constant based on Oklo and mete-
oritic data [43]. As noted above, we can not fully evolve
the variations in all nuclear reactions, because their de-
pendence is unknown. Here, we will be primarily inter-
ested in the induced variations of the nucleon mass dif-
ference, the neutron life-time, and the binding energy of
deuterium. We recognize that this represents a limitation
on our results.

In section § II, we relate the variation of the BBN pa-
rameters, mainly Q, τn and BD, to the variation of the
fundamental parameters such as the Yukawa couplings,
h, the QCD energy scale, Λ, and the fine structure con-
stant, α. Section III focuses on the relations that can be
drawn between the variations of the fundamental param-
eters, taking into account successively grand unification,
dimensional transmutation and the possibility that the
variation is driven by a dilaton. In order to deal with
some of the theoretical uncertainties, we introduce two
phenomenological parameters and we then make the con-
nection with the variation of the proton to electron mass
ratio at low redshift. Section IV focuses on the BBN
computation and first describes the implementation of
the variations in our BBN code. Assuming that the fine
structure constant does not vary we show that deuterium
and 4He data set strong constraints on the variation of
the Yukawa couplings [see Eq. (35)] but that inside this
bound there exists a range reconciling the 7Li abundance
with spectroscopic observations. We then allow the fine
structure constant to vary and set a sharp constraint on
its variation in the dilaton scenario [see Eqs. (36) and
(37)].

II. FROM FUNDAMENTAL PARAMETERS TO
BBN QUANTITIES

As discussed above, we focus our attention on three
physical quantities which have direct bearing on the re-
sulting abundances from BBN, the nucleon mass differ-
ence Q = mn −mp = 1.29 MeV, the neutron lifetime τn,
and the binding energy of deuterium BD.

The neutron-proton mass difference is expressed in
terms of α, Λ, v, and the u and d quark Yukawa couplings
as

Q ≡ mn − mp = a α Λ + (hd − hu) v , (4)

where the electromagnetic contribution at present is
a α0 Λ0 = −0.76, and therefore the weak contribution
is (hd0−hu0) v0 = 2.05 [44]. The variation of Q will then
scale as

∆Q

Q
= −0.6

[

∆α

α
+

∆Λ

Λ

]

+ 1.6

[

∆(hd − hu)

hd − hu
+

∆v

v

]

.

(5)
The neutron lifetime can be well approximated by

τ−1
n =

1

60

1 + 3 g2
A

2π3
G2

F m5
e

[

√

q2 − 1(2q4 − 9q2 − 8)

+15 ln(q +
√

q2 − 1)
]

, (6)

where q = Q/me. Since GF = 1/
√

2v2 and me = hev we
have for the relative variation of the neutron lifetime,

∆τn

τn
= −4.8

∆v

v
+ 1.5

∆he

he
− 10.4

∆(hd − hu)

hd − hu

+3.8

(

∆α

α
+

∆Λ

Λ

)

. (7)

In addition to Q and τn, which have been well stud-
ied in the context of BBN, we consider the variation of
BD. This is one of the better known quantities in the
nuclear domain: it is experimentally measured to a pre-
cision better than 10−6 [45] so that allowing a change
of its value by a few % at BBN can only be reconciled
with laboratory measurements if its value is varying with
time.

Recently, in a series of works [28, 29, 46] Flambaum
and collaborators have considered the dependence of
hadronic properties on quark masses and have set con-
straints on the deuterium binding energy from BBN [29]
following Refs. [30–32]. The importance of BD can be
understood by the fact that the equilibrium abundance
of deuterium and the reaction rate p(n, γ)D depend ex-
ponentially on BD and on the fact that the deuterium is
in a shallow bound state.

Here, we follow Refs. [29, 46] to compute the quark-
mass dependence of the deuterium binding energy. Using
a potential model, the dependence of BD on the nucleon
mass and, σ and ω meson masses have been determined
[46]

∆BD

BD
= −48

∆mσ

mσ
+ 50

∆mω

mω
+ 6

∆mN

mN
. (8)

Taking all dimensionfull quantities proportional to Λ
we have ∆BD/BD = 8 ∆Λ/Λ. On the other hand,
fixing Λ, when varying quark masses (the largest con-
tribution comes from ms), their result is ∆BD/BD =
−17 ∆ms/ms.

The importance of the strange quark in the nucleon
and meson masses can be traced to the π-nucleon Σ term,
which is given by

σπN ≡ Σ =
1

2
(mu + md)(Bu + Bd). (9)
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the weak scale is determined by dimensional transmu-
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Yukawa couplings and variations in the Higgs vev. Varia-
tions in the latter will also trigger variations in Λ. While
the exact relation between these variations is model de-
pendent, the fact that they are interrelated is not. There-
fore it is inconsistent for example to consider a variation
in v without simultaneously varying Λ. We will make
use of these dependencies to study variations in several
(tractable) quantities which affect BBN. Coupled varia-
tions of this type were used to strengthen existing bounds
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the variations in all nuclear reactions, because their de-
pendence is unknown. Here, we will be primarily inter-
ested in the induced variations of the nucleon mass dif-
ference, the neutron life-time, and the binding energy of
deuterium. We recognize that this represents a limitation
on our results.

In section § II, we relate the variation of the BBN pa-
rameters, mainly Q, τn and BD, to the variation of the
fundamental parameters such as the Yukawa couplings,
h, the QCD energy scale, Λ, and the fine structure con-
stant, α. Section III focuses on the relations that can be
drawn between the variations of the fundamental param-
eters, taking into account successively grand unification,
dimensional transmutation and the possibility that the
variation is driven by a dilaton. In order to deal with
some of the theoretical uncertainties, we introduce two
phenomenological parameters and we then make the con-
nection with the variation of the proton to electron mass
ratio at low redshift. Section IV focuses on the BBN
computation and first describes the implementation of
the variations in our BBN code. Assuming that the fine
structure constant does not vary we show that deuterium
and 4He data set strong constraints on the variation of
the Yukawa couplings [see Eq. (35)] but that inside this
bound there exists a range reconciling the 7Li abundance
with spectroscopic observations. We then allow the fine
structure constant to vary and set a sharp constraint on
its variation in the dilaton scenario [see Eqs. (36) and
(37)].

II. FROM FUNDAMENTAL PARAMETERS TO
BBN QUANTITIES

As discussed above, we focus our attention on three
physical quantities which have direct bearing on the re-
sulting abundances from BBN, the nucleon mass differ-
ence Q = mn −mp = 1.29 MeV, the neutron lifetime τn,
and the binding energy of deuterium BD.

The neutron-proton mass difference is expressed in
terms of α, Λ, v, and the u and d quark Yukawa couplings
as

Q ≡ mn − mp = a α Λ + (hd − hu) v , (4)

where the electromagnetic contribution at present is
a α0 Λ0 = −0.76, and therefore the weak contribution
is (hd0−hu0) v0 = 2.05 [44]. The variation of Q will then
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In addition to Q and τn, which have been well stud-
ied in the context of BBN, we consider the variation of
BD. This is one of the better known quantities in the
nuclear domain: it is experimentally measured to a pre-
cision better than 10−6 [45] so that allowing a change
of its value by a few % at BBN can only be reconciled
with laboratory measurements if its value is varying with
time.

Recently, in a series of works [28, 29, 46] Flambaum
and collaborators have considered the dependence of
hadronic properties on quark masses and have set con-
straints on the deuterium binding energy from BBN [29]
following Refs. [30–32]. The importance of BD can be
understood by the fact that the equilibrium abundance
of deuterium and the reaction rate p(n, γ)D depend ex-
ponentially on BD and on the fact that the deuterium is
in a shallow bound state.

Here, we follow Refs. [29, 46] to compute the quark-
mass dependence of the deuterium binding energy. Using
a potential model, the dependence of BD on the nucleon
mass and, σ and ω meson masses have been determined
[46]
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Taking all dimensionfull quantities proportional to Λ
we have ∆BD/BD = 8 ∆Λ/Λ. On the other hand,
fixing Λ, when varying quark masses (the largest con-
tribution comes from ms), their result is ∆BD/BD =
−17 ∆ms/ms.

The importance of the strange quark in the nucleon
and meson masses can be traced to the π-nucleon Σ term,
which is given by

σπN ≡ Σ =
1
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In the models we study below, the squark flavours are diagonalized in the same basis as the
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Strangeness contribution
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Defining y = 2Bs/(Bu +Bd), the combination Σ(1−y) is
the change in the nucleon mass due to the non-zero u, d
quark masses, which is estimated on the basis of octet
baryon mass differences to be σ0 = 36±7 MeV [47]. Fol-
lowing Ref. [48], we have (Bu−Bs)/(Bd−Bs) = 1.49 and
given a value of Σ, one can determine Bq. In Ref. [46], the
value Bs = 1.5 was adopted and corresponds to Σ % 51
MeV, which is a reasonable value. This corresponds to
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The value of Σ however has substantial uncertainties
which were recently discussed in Ref. [49]. A often used
value is Σ = 45 MeV which was already somewhat larger
than naive quark model estimates, and corresponded to
y % 0.2. However, recent determinations of the π-nucleon
Σ term have found higher values [50], Σ = 64 MeV. Still
higher values can be ascertained for the observation of
exotic baryons [51]. For Σ = 45 (64) MeV, Bs = 0.9
(2.8) and ∆mN/mN = 0.12 (0.36) ∆ms/ms. The con-
tribution from u and d quarks is 0.046 and 0.066 for Σ =
45, 64 MeV, respectively. A similar calculation for the ω
meson leads to ∆mω/mω = (0.09, 0.15, 0.29) ∆ms/ms

for Σ = 45, 51, and 64 MeV respectively. For the σ
meson, three contributions were identified in [46], only
one of which is related to Σ, yielding ∆mσ/mσ = (0.44,
0.54, 0.75) ∆ms/ms. Combining these sensitivities using
Eq. (8), we would arrive at ∆BD/BD = (−16,−17,−19)
∆ms/ms (when the u and d contributions are neglected).
Thus, despite the large uncertainties in the individual
sensitivities, the dependence of BD on the strange quark
mass is relatively stable. Because of the cancellations
in Eq. (8), the u and d quark contributions are indeed
small: ∆BD/BD = (0.08,−0.009,−0.20) ∆mq/mq and
can safely be neglected.

Choosing the central value Σ = 51 MeV and since
ms = hsv, we immediately have the relation between
BD, h, and v. Adding these two contributions and using
∆BD/BD = −17∆ms/ms we have in general,

∆BD
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)

, (12)

Eqs. (5), (7), and (12) form the initial basis for our
computation.

III. RELATIONS BETWEEN FUNDAMENTAL
PARAMETERS

A. General relations in a GUT

We note that several relations among our fundamental
parameters can be found. First, changes in either h or
v trigger changes in Λ [52]. This is evident from the
low energy expression for Λ when mass thresholds are
included
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The value of R is determined by the particular grand
unified theory and particle content which control both
the value of α(MGUT ) = αs(MGUT ) and the low energy
relation between α and αs, leading to significant model
dependence in R [53, 54]. Here we will assume a value of
R = 36 corresponding to a set of minimal assumptions
[27, 55]. However, in most BBN computations, we will
neglect the variation in α and therefore the precise value
of R chosen will not affect our conclusions. Nevertheless,
the relation between h, v and Λ is quite robust and has
been neglected in most studies discussing the effect of
varying v (or varying GF ) [30].

For the quantities we are interested in, we now have
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where we have assumed that all Yukawa couplings vary
identically, ∆hi/hi = ∆h/h. For clarity, we have writ-
ten only rounded values of the coefficients, however,
the numerical computation of the light element abun-
dances uses the more precise values. We also recall that
∆GF /GF = −2∆v/v and ∆me/me = ∆h/h + ∆v/v.

B. Interrelations between fundamental parameters

Secondly, in all models in which the weak scale is de-
termined by dimensional transmutation, changes in the

1 In supersymmetric models, additional thresholds related to
squark and gluino masses would affect this relation [53].
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B. Interrelations between fundamental parameters

Secondly, in all models in which the weak scale is de-
termined by dimensional transmutation, changes in the

1 In supersymmetric models, additional thresholds related to
squark and gluino masses would affect this relation [53].
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∆ms/ms for Σ = 45, 51, and 64 MeV respectively. For
the σ meson, three contributions were identified in [43],
only one of which is related to Σ, yielding ∆mσ/mσ =
(0.44, 0.54, 0.75) ∆ms/ms. Combining these sensitivites
using eq. 8, we would arrive at ∆BD/BD = (–16, –17,
–19) ∆ms/ms (when the u and d contributions are ne-
glected). Thus despite the large uncertainties in the indi-
vidual sensitivities, the dependence of BD on the strange
quark mass is relatively stable. Because of the cancella-
tions in eq. 8, the u and d quark contributions are indeed
small: ∆BD/BD = (0.07, –0.03, –0.21) ∆mq/mq and can
safely be neglected.

Since ms = hsv we immediately have the relation be-
tween BD, h, and v. Adding these two contributions and
using ∆BD/BD = −17∆ms/ms we have in general,

∆BD

BD
= 8

∆Λ

Λ
− 17

(

∆v

v
+

∆hs

hs

)

, (11)

Eqs. (5), (7), and (11) form the initial basis for our
computation.

III. RELATIONS BETWEEN FUNDAMENTAL
PARAMETERS

We note that several relations among our fundamental
parameters can be found. First, changes in either h or v
trigger changes in Λ [49]. This is evident from the low
energy expression for Λ when thresholds are included

Λ = µ

(

mc mb mt

µ3

)2/27

exp

(

−
2π

9αs(µ)

)

. (12)

for µ > mt up to some unification scale in the standard
model1

∆Λ

Λ
= R

∆α

α
+

2

27

(

3
∆v

v
+

∆hc

hc
+

∆hb

hb
+

∆ht

ht

)

.

(13)
The value of R is determined by the particular grand
unified theory and particle content which control both
the value of α(MGUT ) = αs(MGUT ) and the low energy
relation between α and αs, leading to significant model
dependence in R [50, 51]. Here we will assume a value
of R = 36 corresponding to a set of minimal assumtions
[25, 52]. However, in the numerical computation of the
light element abundances, we neglect the variation in α
(see discussion below) and therefore the precise value of
R chosen does not affect our conclusions. Nevertheless,
the relation between h, v and Λ is quite robust and has
been neglected in most studies discussing the effect of
varying v (or varying GF ) [28].

1 In supersymmetric model, additional thresholds related to
squark and gluino masses would affect this relation [50].

For the quantities we are interested, we now have

∆BD
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= −15

(

∆v

v
+
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h

)

+ 290
∆α

α
, (14)

∆Q

Q
= 1.5

(

∆v

v
+
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h

)

− 22
∆α

α
, (15)

∆τ

τ
= −4

∆v

v
− 8

∆h

h
+ 140

∆α

α
. (16)

where we have assumed that all Yukawa couplings vary
identically, ∆hi/hi = ∆h/h. For clarity of presentation
we have written rounded values of the coefficients, how-
ever, in the numerical computation of the light element
abundances, we use more accurate values.

Secondly, in all models in which the weak scale is de-
termined by transdimensional mutation, changes in the
largest Yukawa coupling, ht, will trigger changes in v [40].
In such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as
[25]

v = MP exp

(

−
8π2c

h2
t

)

, (17)

where c is a constant of order unity. Indeed, in su-
persymmetric models with unification conditions such as
the constrained minimal supersymmetric standard model
[53], there is in general a significant amount of sensitiv-
ity to the Yukawa couplings and the top quark Yukawa
in particular. This sensitivity can be quantified by a fine-
tuning measure defined by [54]

∆i ≡
∂ lnmW

∂ ln ai
(18)

where mW is the mass of the W boson and can be sub-
situted with v, the ai are the input parameters of the
supersymmetric model and include ht. In regions of pa-
rameter space which provide a suitable dark matter can-
didate [55], the total sensitivity ∆ =

√

∑

i ∆2
i typically

ranges from 100 – 400 for which the top quark contribu-
tion is in the range ∆t = 80 − 250. In models where the
neutralino is more massive, ∆ may surpass 1000 and ∆t

may be as large as ∼ 500.
Clearly there is considerable model dependence in the

relation between ∆v and ∆ht. Here we will assume a
relatively central value obtained from 17 with c ≈ h0 ≈ 1.
In this case we have

∆v

v
= 16π2c

∆h

h3
≈ 160

∆h

h
, (19)

which leads to the variations of BD, Q and τ in the fol-
lowing way:

∆BD

BD
= −2700

∆h

h
+ 8

∆Λ

Λ
, (20)

∆Q

Q
= 250

∆h

h
− 0.6

(

∆α

α
+

∆Λ

Λ

)

, (21)

∆τ

τ
= −770

∆h

h
+ 3.8

(

∆α

α
+

∆Λ

Λ

)

, (22)
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∆ms/ms for Σ = 45, 51, and 64 MeV respectively. For
the σ meson, three contributions were identified in [43],
only one of which is related to Σ, yielding ∆mσ/mσ =
(0.44, 0.54, 0.75) ∆ms/ms. Combining these sensitivites
using eq. 8, we would arrive at ∆BD/BD = (–16, –17,
–19) ∆ms/ms (when the u and d contributions are ne-
glected). Thus despite the large uncertainties in the indi-
vidual sensitivities, the dependence of BD on the strange
quark mass is relatively stable. Because of the cancella-
tions in eq. 8, the u and d quark contributions are indeed
small: ∆BD/BD = (0.07, –0.03, –0.21) ∆mq/mq and can
safely be neglected.

Since ms = hsv we immediately have the relation be-
tween BD, h, and v. Adding these two contributions and
using ∆BD/BD = −17∆ms/ms we have in general,

∆BD

BD
= 8

∆Λ

Λ
− 17

(

∆v

v
+

∆hs

hs

)

, (11)

Eqs. (5), (7), and (11) form the initial basis for our
computation.

III. RELATIONS BETWEEN FUNDAMENTAL
PARAMETERS

We note that several relations among our fundamental
parameters can be found. First, changes in either h or v
trigger changes in Λ [49]. This is evident from the low
energy expression for Λ when thresholds are included

Λ = µ

(

mc mb mt

µ3

)2/27

exp

(

−
2π

9αs(µ)

)

. (12)

for µ > mt up to some unification scale in the standard
model1

∆Λ

Λ
= R

∆α

α
+

2

27

(

3
∆v

v
+

∆hc

hc
+

∆hb

hb
+

∆ht

ht

)

.

(13)
The value of R is determined by the particular grand
unified theory and particle content which control both
the value of α(MGUT ) = αs(MGUT ) and the low energy
relation between α and αs, leading to significant model
dependence in R [50, 51]. Here we will assume a value
of R = 36 corresponding to a set of minimal assumtions
[25, 52]. However, in the numerical computation of the
light element abundances, we neglect the variation in α
(see discussion below) and therefore the precise value of
R chosen does not affect our conclusions. Nevertheless,
the relation between h, v and Λ is quite robust and has
been neglected in most studies discussing the effect of
varying v (or varying GF ) [28].

1 In supersymmetric model, additional thresholds related to
squark and gluino masses would affect this relation [50].

For the quantities we are interested, we now have

∆BD

BD
= −15

(

∆v

v
+

∆h

h

)

+ 290
∆α

α
, (14)

∆Q

Q
= 1.5

(

∆v

v
+

∆h

h

)

− 22
∆α

α
, (15)

∆τ

τ
= −4

∆v

v
− 8

∆h

h
+ 140

∆α

α
. (16)

where we have assumed that all Yukawa couplings vary
identically, ∆hi/hi = ∆h/h. For clarity of presentation
we have written rounded values of the coefficients, how-
ever, in the numerical computation of the light element
abundances, we use more accurate values.

Secondly, in all models in which the weak scale is de-
termined by transdimensional mutation, changes in the
largest Yukawa coupling, ht, will trigger changes in v [40].
In such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as
[25]

v = MP exp

(

−
8π2c

h2
t

)

, (17)

where c is a constant of order unity. Indeed, in su-
persymmetric models with unification conditions such as
the constrained minimal supersymmetric standard model
[53], there is in general a significant amount of sensitiv-
ity to the Yukawa couplings and the top quark Yukawa
in particular. This sensitivity can be quantified by a fine-
tuning measure defined by [54]

∆i ≡
∂ lnmW

∂ ln ai
(18)

where mW is the mass of the W boson and can be sub-
situted with v, the ai are the input parameters of the
supersymmetric model and include ht. In regions of pa-
rameter space which provide a suitable dark matter can-
didate [55], the total sensitivity ∆ =

√

∑

i ∆2
i typically

ranges from 100 – 400 for which the top quark contribu-
tion is in the range ∆t = 80 − 250. In models where the
neutralino is more massive, ∆ may surpass 1000 and ∆t

may be as large as ∼ 500.
Clearly there is considerable model dependence in the

relation between ∆v and ∆ht. Here we will assume a
relatively central value obtained from 17 with c ≈ h0 ≈ 1.
In this case we have

∆v

v
= 16π2c

∆h

h3
≈ 160

∆h

h
, (19)

which leads to the variations of BD, Q and τ in the fol-
lowing way:

∆BD

BD
= −2700
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h
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Λ
, (20)
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∆ms/ms for Σ = 45, 51, and 64 MeV respectively. For
the σ meson, three contributions were identified in [43],
only one of which is related to Σ, yielding ∆mσ/mσ =
(0.44, 0.54, 0.75) ∆ms/ms. Combining these sensitivites
using eq. 8, we would arrive at ∆BD/BD = (–16, –17,
–19) ∆ms/ms (when the u and d contributions are ne-
glected). Thus despite the large uncertainties in the indi-
vidual sensitivities, the dependence of BD on the strange
quark mass is relatively stable. Because of the cancella-
tions in eq. 8, the u and d quark contributions are indeed
small: ∆BD/BD = (0.07, –0.03, –0.21) ∆mq/mq and can
safely be neglected.

Since ms = hsv we immediately have the relation be-
tween BD, h, and v. Adding these two contributions and
using ∆BD/BD = −17∆ms/ms we have in general,

∆BD

BD
= 8

∆Λ

Λ
− 17

(

∆v

v
+

∆hs

hs

)

, (11)

Eqs. (5), (7), and (11) form the initial basis for our
computation.

III. RELATIONS BETWEEN FUNDAMENTAL
PARAMETERS

We note that several relations among our fundamental
parameters can be found. First, changes in either h or v
trigger changes in Λ [49]. This is evident from the low
energy expression for Λ when thresholds are included

Λ = µ

(

mc mb mt

µ3

)2/27

exp

(

−
2π

9αs(µ)

)

. (12)

for µ > mt up to some unification scale in the standard
model1
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)

.

(13)
The value of R is determined by the particular grand
unified theory and particle content which control both
the value of α(MGUT ) = αs(MGUT ) and the low energy
relation between α and αs, leading to significant model
dependence in R [50, 51]. Here we will assume a value
of R = 36 corresponding to a set of minimal assumtions
[25, 52]. However, in the numerical computation of the
light element abundances, we neglect the variation in α
(see discussion below) and therefore the precise value of
R chosen does not affect our conclusions. Nevertheless,
the relation between h, v and Λ is quite robust and has
been neglected in most studies discussing the effect of
varying v (or varying GF ) [28].

1 In supersymmetric model, additional thresholds related to
squark and gluino masses would affect this relation [50].

For the quantities we are interested, we now have
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)
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, (14)
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, (15)
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h
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∆α

α
. (16)

where we have assumed that all Yukawa couplings vary
identically, ∆hi/hi = ∆h/h. For clarity of presentation
we have written rounded values of the coefficients, how-
ever, in the numerical computation of the light element
abundances, we use more accurate values.

Secondly, in all models in which the weak scale is de-
termined by transdimensional mutation, changes in the
largest Yukawa coupling, ht, will trigger changes in v [40].
In such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as
[25]

v = MP exp

(

−
8π2c

h2
t

)

, (17)

where c is a constant of order unity. Indeed, in su-
persymmetric models with unification conditions such as
the constrained minimal supersymmetric standard model
[53], there is in general a significant amount of sensitiv-
ity to the Yukawa couplings and the top quark Yukawa
in particular. This sensitivity can be quantified by a fine-
tuning measure defined by [54]

∆i ≡
∂ lnmW

∂ ln ai
(18)

where mW is the mass of the W boson and can be sub-
situted with v, the ai are the input parameters of the
supersymmetric model and include ht. In regions of pa-
rameter space which provide a suitable dark matter can-
didate [55], the total sensitivity ∆ =

√

∑

i ∆2
i typically

ranges from 100 – 400 for which the top quark contribu-
tion is in the range ∆t = 80 − 250. In models where the
neutralino is more massive, ∆ may surpass 1000 and ∆t

may be as large as ∼ 500.
Clearly there is considerable model dependence in the

relation between ∆v and ∆ht. Here we will assume a
relatively central value obtained from 17 with c ≈ h0 ≈ 1.
In this case we have

∆v

v
= 16π2c

∆h

h3
≈ 160

∆h

h
, (19)

which leads to the variations of BD, Q and τ in the fol-
lowing way:
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R ~ 30,  but very model dependent Dine et al.
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where

Bq ≡ 〈p|q̄q|p〉 (10)

Defining y = 2Bs/(Bu +Bd), the combination Σ(1−y) is
the change in the nucleon mass due to the non-zero u, d
quark masses, which is estimated on the basis of octet
baryon mass differences to be σ0 = 36±7 MeV [47]. Fol-
lowing Ref. [48], we have (Bu−Bs)/(Bd−Bs) = 1.49 and
given a value of Σ, one can determine Bq. In Ref. [46], the
value Bs = 1.5 was adopted and corresponds to Σ % 51
MeV, which is a reasonable value. This corresponds to

∆mN

mN
=

(

msBs

mN

)

∆ms

ms
% 0.19

∆ms

ms
.

For these values we find a similar value (though slightly
larger than the one found in Ref. [46]) for the light quark
(u and d) contributions which give

∆mN

mN
% 0.052

∆mq

mq
.

This implies that

∆mp

mp
%

∆Λ

Λ
+ 0.24

(

∆h

h
+

∆v

v

)

. (11)

The value of Σ however has substantial uncertainties
which were recently discussed in Ref. [49]. A often used
value is Σ = 45 MeV which was already somewhat larger
than naive quark model estimates, and corresponded to
y % 0.2. However, recent determinations of the π-nucleon
Σ term have found higher values [50], Σ = 64 MeV. Still
higher values can be ascertained for the observation of
exotic baryons [51]. For Σ = 45 (64) MeV, Bs = 0.9
(2.8) and ∆mN/mN = 0.12 (0.36) ∆ms/ms. The con-
tribution from u and d quarks is 0.046 and 0.066 for Σ =
45, 64 MeV, respectively. A similar calculation for the ω
meson leads to ∆mω/mω = (0.09, 0.15, 0.29) ∆ms/ms

for Σ = 45, 51, and 64 MeV respectively. For the σ
meson, three contributions were identified in [46], only
one of which is related to Σ, yielding ∆mσ/mσ = (0.44,
0.54, 0.75) ∆ms/ms. Combining these sensitivities using
Eq. (8), we would arrive at ∆BD/BD = (−16,−17,−19)
∆ms/ms (when the u and d contributions are neglected).
Thus, despite the large uncertainties in the individual
sensitivities, the dependence of BD on the strange quark
mass is relatively stable. Because of the cancellations
in Eq. (8), the u and d quark contributions are indeed
small: ∆BD/BD = (0.08,−0.009,−0.20) ∆mq/mq and
can safely be neglected.

Choosing the central value Σ = 51 MeV and since
ms = hsv, we immediately have the relation between
BD, h, and v. Adding these two contributions and using
∆BD/BD = −17∆ms/ms we have in general,

∆BD

BD
= 8

∆Λ

Λ
− 17

(

∆v

v
+

∆hs

hs

)

, (12)

Eqs. (5), (7), and (12) form the initial basis for our
computation.

III. RELATIONS BETWEEN FUNDAMENTAL
PARAMETERS

A. General relations in a GUT

We note that several relations among our fundamental
parameters can be found. First, changes in either h or
v trigger changes in Λ [52]. This is evident from the
low energy expression for Λ when mass thresholds are
included

Λ = µ

(

mc mb mt

µ3

)2/27

exp

(

−
2π

9αs(µ)

)

. (13)

for µ > mt up to some unification scale in the standard
model1
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Λ
= R
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α
+

2

27

(

3
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v
+
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hc
+

∆hb

hb
+

∆ht

ht

)

.

(14)
The value of R is determined by the particular grand
unified theory and particle content which control both
the value of α(MGUT ) = αs(MGUT ) and the low energy
relation between α and αs, leading to significant model
dependence in R [53, 54]. Here we will assume a value of
R = 36 corresponding to a set of minimal assumptions
[27, 55]. However, in most BBN computations, we will
neglect the variation in α and therefore the precise value
of R chosen will not affect our conclusions. Nevertheless,
the relation between h, v and Λ is quite robust and has
been neglected in most studies discussing the effect of
varying v (or varying GF ) [30].

For the quantities we are interested in, we now have

∆BD

BD
= −15

(

∆v

v
+

∆h

h

)

+ 8R
∆α

α
, (15)

∆Q

Q
= 1.5

(

∆v

v
+
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h

)

− 0.6(1 + R)
∆α

α
, (16)

∆τn

τn
= −4

∆v

v
− 8

∆h

h
+ 3.8(1 + R)

∆α

α
. (17)

where we have assumed that all Yukawa couplings vary
identically, ∆hi/hi = ∆h/h. For clarity, we have writ-
ten only rounded values of the coefficients, however,
the numerical computation of the light element abun-
dances uses the more precise values. We also recall that
∆GF /GF = −2∆v/v and ∆me/me = ∆h/h + ∆v/v.

B. Interrelations between fundamental parameters

Secondly, in all models in which the weak scale is de-
termined by dimensional transmutation, changes in the

1 In supersymmetric models, additional thresholds related to
squark and gluino masses would affect this relation [53].

Net sensitivities due to Λ
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∆h
h = 1

2
∆αU
αU

But in theories with radiative electroweak
symmetry breaking
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Figure 2: (a) The large-m1/2 ‘tail’ of the χ− τ̃1 coannihilation region for tanβ = 10, A0 = 0
and µ < 0 [24], superimposed on the disallowed dark (brick red) shaded region where mτ̃1 <
mχ, and (b) the χ− t̃1 coannihilation region for tanβ = 10, A0 = 2000 GeV and µ > 0 [26],
exhibiting a large-m0 ‘tail’.

3 Fine Tuning

The filaments extending the preferred CMSSM parameter space are clearly exceptional, in
some sense, so it is important to understand the sensitivity of the relic density to input
parameters, unknown higher-order effects, etc. One proposal is the relic-density fine-tuning
measure [29]

∆Ω ≡

√

√

√

√

∑

i

(

∂ ln(Ωχh2)

∂ ln ai

)2

(8)

where the sum runs over the input parameters, which includes the (relatively) poorly-known
Standard Model quantities such as mt and mb, as well as the CMSSM parameters m0, m1/2,
A0 and tanβ. As seen in Fig. 4, the sensitivity ∆Ω (8) is relatively small in the ‘bulk’ region
at low m1/2, m0, and tanβ. However, it is somewhat higher in the χ − τ̃1 coannihilation
‘tail’, and at large tanβ in general. The sensitivity measure ∆Ω (8) is particularly high in
the rapid-annihilation ‘funnel’ and in the ‘focus-point’ region. This explains why published
relic-density calculations may differ in these regions [30], whereas they agree well when ∆Ω

is small: differences may arise because of small differences in the treatments of the inputs.
It is important to note that the relic-density fine-tuning measure (8) is distinct from the

traditional measure of the fine-tuning of the electroweak scale [31]:

∆ =
√

∑

i

∆ 2
i , ∆i ≡

∂ ln mW

∂ ln ai
(9)

6

Define another sensitivity parameter

5

largest Yukawa coupling, ht, will trigger changes in v [42].
In such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as
(see Ref. [27])

v = MP exp

(

−
8π2c

h2
t

)

, (18)

where c is a constant of order unity. Indeed, in su-
persymmetric models with unification conditions such as
the constrained minimal supersymmetric standard model
[56], there is in general a significant amount of sensitiv-
ity to the Yukawa couplings and the top quark Yukawa
in particular. This sensitivity can be quantified by a fine-
tuning measure defined by [57]

∆i ≡
∂ lnmW

∂ ln ai
(19)

where mW is the mass of the W boson and can be sub-
stituted with v. The ai are the input parameters of the
supersymmetric model and include ht. In regions of the
parameters space which provide a suitable dark matter
candidate [58], the total sensitivity ∆ =

√

∑

i ∆2
i typi-

cally ranges from 100 – 400 for which the top quark con-
tribution is in the range ∆t = 80− 250. In models where
the neutralino is more massive, ∆ may surpass 1000 and
∆t may be as large as ∼ 500.

Clearly there is a considerable model dependence in
the relation between ∆v and ∆ht. Here we assume a
relatively central value obtained from Eq. (18) with c $
h0 $ 1. In this case we have

∆v

v
= 16π2c

∆h

h3
$ 160

∆h

h
, (20)

but in light of the model dependence, we will set

∆v

v
≡ S

∆h

h
, (21)

hence defining S ≡ d ln v/d lnh ∼ ∆t and keeping in
mind that S $ 160. It follows that the variations of BD,
Q and τn are expressed in the following way

∆BD

BD
= −17(S + 1)

∆h

h
+ 8

∆Λ

Λ
, (22)

∆Q

Q
= 1.6(S + 1)

∆h

h
− 0.6

(

∆α

α
+

∆Λ

Λ

)

, (23)

∆τn

τn
=−(8.8 + 4.8S)

∆h

h
+3.8

(

∆α

α
+

∆Λ

Λ

)

(24)

where we have again assumed common variations in all
of the Yukawa couplings. It also follows that ∆GF /GF =
−2S∆h/h and ∆me/me = (1 + S)∆h/h.

Now, using the relation (14) we arrive at

∆BD

BD
= −15(1 + S)

∆h

h
+ 8R

∆α

α
(25)

∆Q

Q
= 1.5(1 + S)

∆h

h
− 0.6(1 + R)

∆α

α
, (26)

∆τn

τn
= −(8 + 4S)

∆h

h
+ 3.8(1 + R)

∆α

α
. (27)

Finally we can take into account the possibility that
the variation of the constants is induced by an evolv-
ing dilaton [27]. In this scenario, it was shown that
∆h/h = (1/2)∆α/α, therefore the expressions above can
be simplified to

∆BD

BD
= −[7.6(1 + S) − 8R]

∆α

α
(28)

∆Q

Q
= (0.1 + 0.7S − 0.6R)

∆α

α
(29)

∆τn

τn
= −[0.2 + 2S − 3.8R]

∆α

α
, (30)

though these relations will also be affected by model de-
pendent threshold corrections.

C. Links to the variation of mp/me

Before we use the above relations in our BBN code, it
is interesting to first compare these relations with the ob-
served variation in µ. Using Eq. (11), and then Eqs. (14)
and (21), the proton-to-electron mass ratio, µ = mp/me

varies according to

∆µ

µ
= R

∆α

α
− 0.5(S + 1)

∆h

h
. (31)

Using the current value on the observational variation of
µ at redshift z ∼ 3 [38], i.e. ∆µ/µ ≈ 3× 10−5 we obtain,
assuming α constant,

∆h

h
$ −3.5 × 10−7

(

161

1 + S

)

. (32)

Interestingly we deduce from Eq. (25) that when α is
constant

∆BD

BD
$ 28.4

∆µ

µ
$ 8.5 × 10−4 , (33)

at z ∼ 3, independent of the value of S.
In the case where the variation is driven by a dilaton,

we can link the observational variation in µ to a variation
in α to get

∆α

α
= −4.2 × 10−6

[

−7.1

R − 0.3(S + 1)

]

, (34)

which is compatible with the measurement of the time
variation of the fine structure constant in Refs. [33, 34]
but higher than the stronger bound found in Ref. [35],
for the considered value (R, S) = (36, 160). Note that
this corresponds to ∆BD/BD $ 4 × 10−3, by applying
Eq. (28), which is clearly larger than in Eq. (33). This
clearly illustrates the importance of the theoretical prej-
udices.
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Putting both relations together:

5

largest Yukawa coupling, ht, will trigger changes in v [42].
In such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as
(see Ref. [27])

v = MP exp

(

−
8π2c

h2
t

)

, (18)

where c is a constant of order unity. Indeed, in su-
persymmetric models with unification conditions such as
the constrained minimal supersymmetric standard model
[56], there is in general a significant amount of sensitiv-
ity to the Yukawa couplings and the top quark Yukawa
in particular. This sensitivity can be quantified by a fine-
tuning measure defined by [57]

∆i ≡
∂ lnmW

∂ ln ai
(19)

where mW is the mass of the W boson and can be sub-
stituted with v. The ai are the input parameters of the
supersymmetric model and include ht. In regions of the
parameters space which provide a suitable dark matter
candidate [58], the total sensitivity ∆ =

√

∑

i ∆2
i typi-

cally ranges from 100 – 400 for which the top quark con-
tribution is in the range ∆t = 80− 250. In models where
the neutralino is more massive, ∆ may surpass 1000 and
∆t may be as large as ∼ 500.

Clearly there is a considerable model dependence in
the relation between ∆v and ∆ht. Here we assume a
relatively central value obtained from Eq. (18) with c $
h0 $ 1. In this case we have

∆v

v
= 16π2c

∆h

h3
$ 160

∆h

h
, (20)

but in light of the model dependence, we will set

∆v

v
≡ S

∆h

h
, (21)

hence defining S ≡ d ln v/d lnh ∼ ∆t and keeping in
mind that S $ 160. It follows that the variations of BD,
Q and τn are expressed in the following way

∆BD

BD
= −17(S + 1)

∆h

h
+ 8

∆Λ

Λ
, (22)

∆Q

Q
= 1.6(S + 1)

∆h

h
− 0.6

(

∆α

α
+

∆Λ

Λ

)

, (23)

∆τn

τn
=−(8.8 + 4.8S)

∆h

h
+3.8

(

∆α

α
+

∆Λ

Λ

)

(24)

where we have again assumed common variations in all
of the Yukawa couplings. It also follows that ∆GF /GF =
−2S∆h/h and ∆me/me = (1 + S)∆h/h.

Now, using the relation (14) we arrive at

∆BD

BD
= −15(1 + S)

∆h

h
+ 8R

∆α

α
(25)

∆Q

Q
= 1.5(1 + S)

∆h

h
− 0.6(1 + R)

∆α

α
, (26)

∆τn

τn
= −(8 + 4S)

∆h

h
+ 3.8(1 + R)

∆α

α
. (27)

Finally we can take into account the possibility that
the variation of the constants is induced by an evolv-
ing dilaton [27]. In this scenario, it was shown that
∆h/h = (1/2)∆α/α, therefore the expressions above can
be simplified to

∆BD

BD
= −[7.6(1 + S) − 8R]

∆α

α
(28)

∆Q

Q
= (0.1 + 0.7S − 0.6R)

∆α

α
(29)

∆τn

τn
= −[0.2 + 2S − 3.8R]

∆α

α
, (30)

though these relations will also be affected by model de-
pendent threshold corrections.

C. Links to the variation of mp/me

Before we use the above relations in our BBN code, it
is interesting to first compare these relations with the ob-
served variation in µ. Using Eq. (11), and then Eqs. (14)
and (21), the proton-to-electron mass ratio, µ = mp/me

varies according to

∆µ

µ
= R

∆α

α
− 0.5(S + 1)

∆h

h
. (31)

Using the current value on the observational variation of
µ at redshift z ∼ 3 [38], i.e. ∆µ/µ ≈ 3× 10−5 we obtain,
assuming α constant,

∆h

h
$ −3.5 × 10−7

(

161

1 + S

)

. (32)

Interestingly we deduce from Eq. (25) that when α is
constant

∆BD

BD
$ 28.4

∆µ

µ
$ 8.5 × 10−4 , (33)

at z ∼ 3, independent of the value of S.
In the case where the variation is driven by a dilaton,

we can link the observational variation in µ to a variation
in α to get

∆α

α
= −4.2 × 10−6

[

−7.1

R − 0.3(S + 1)

]

, (34)

which is compatible with the measurement of the time
variation of the fine structure constant in Refs. [33, 34]
but higher than the stronger bound found in Ref. [35],
for the considered value (R, S) = (36, 160). Note that
this corresponds to ∆BD/BD $ 4 × 10−3, by applying
Eq. (28), which is clearly larger than in Eq. (33). This
clearly illustrates the importance of the theoretical prej-
udices.

and with 

Also expect variations in Yukawas,

∆h
h = 1

2
∆αU
αU

But in theories with radiative electroweak
symmetry breaking

v ∼ MP exp(−2πc/αt)

Thus small changes in ht
will induce large changes in v

∆v
v ∼ 80∆αU

αU

E.g., predict that:

∆µ
µ ∼ ∆Λ

Λ − ∆v
v ∼ −50∆α

α

or

∆µ
µ ∼ −3 × 10−4
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largest Yukawa coupling, ht, will trigger changes in v [42].
In such cases, the Higgs vev is derived from some unified
mass scale (or the Planck scale) and can be written as
(see Ref. [27])

v = MP exp

(

−
8π2c

h2
t

)

, (18)

where c is a constant of order unity. Indeed, in su-
persymmetric models with unification conditions such as
the constrained minimal supersymmetric standard model
[56], there is in general a significant amount of sensitiv-
ity to the Yukawa couplings and the top quark Yukawa
in particular. This sensitivity can be quantified by a fine-
tuning measure defined by [57]

∆i ≡
∂ lnmW

∂ ln ai
(19)

where mW is the mass of the W boson and can be sub-
stituted with v. The ai are the input parameters of the
supersymmetric model and include ht. In regions of the
parameters space which provide a suitable dark matter
candidate [58], the total sensitivity ∆ =

√

∑

i ∆2
i typi-

cally ranges from 100 – 400 for which the top quark con-
tribution is in the range ∆t = 80− 250. In models where
the neutralino is more massive, ∆ may surpass 1000 and
∆t may be as large as ∼ 500.

Clearly there is a considerable model dependence in
the relation between ∆v and ∆ht. Here we assume a
relatively central value obtained from Eq. (18) with c $
h0 $ 1. In this case we have

∆v

v
= 16π2c

∆h

h3
$ 160

∆h

h
, (20)

but in light of the model dependence, we will set

∆v

v
≡ S

∆h

h
, (21)

hence defining S ≡ d ln v/d lnh ∼ ∆t and keeping in
mind that S $ 160. It follows that the variations of BD,
Q and τn are expressed in the following way

∆BD

BD
= −17(S + 1)

∆h

h
+ 8

∆Λ

Λ
, (22)

∆Q

Q
= 1.6(S + 1)

∆h

h
− 0.6

(

∆α

α
+

∆Λ

Λ

)

, (23)

∆τn

τn
=−(8.8 + 4.8S)

∆h

h
+3.8

(

∆α

α
+

∆Λ

Λ

)

(24)

where we have again assumed common variations in all
of the Yukawa couplings. It also follows that ∆GF /GF =
−2S∆h/h and ∆me/me = (1 + S)∆h/h.

Now, using the relation (14) we arrive at

∆BD

BD
= −15(1 + S)

∆h

h
+ 8R

∆α

α
(25)

∆Q

Q
= 1.5(1 + S)

∆h

h
− 0.6(1 + R)

∆α

α
, (26)

∆τn

τn
= −(8 + 4S)

∆h

h
+ 3.8(1 + R)

∆α

α
. (27)

Finally we can take into account the possibility that
the variation of the constants is induced by an evolv-
ing dilaton [27]. In this scenario, it was shown that
∆h/h = (1/2)∆α/α, therefore the expressions above can
be simplified to

∆BD

BD
= −[7.6(1 + S) − 8R]

∆α

α
(28)

∆Q

Q
= (0.1 + 0.7S − 0.6R)

∆α

α
(29)

∆τn

τn
= −[0.2 + 2S − 3.8R]

∆α

α
, (30)

though these relations will also be affected by model de-
pendent threshold corrections.

C. Links to the variation of mp/me

Before we use the above relations in our BBN code, it
is interesting to first compare these relations with the ob-
served variation in µ. Using Eq. (11), and then Eqs. (14)
and (21), the proton-to-electron mass ratio, µ = mp/me

varies according to

∆µ

µ
= R

∆α

α
− 0.5(S + 1)

∆h

h
. (31)

Using the current value on the observational variation of
µ at redshift z ∼ 3 [38], i.e. ∆µ/µ ≈ 3× 10−5 we obtain,
assuming α constant,

∆h

h
$ −3.5 × 10−7

(

161

1 + S

)

. (32)

Interestingly we deduce from Eq. (25) that when α is
constant

∆BD

BD
$ 28.4

∆µ

µ
$ 8.5 × 10−4 , (33)

at z ∼ 3, independent of the value of S.
In the case where the variation is driven by a dilaton,

we can link the observational variation in µ to a variation
in α to get

∆α

α
= −4.2 × 10−6

[

−7.1

R − 0.3(S + 1)

]

, (34)

which is compatible with the measurement of the time
variation of the fine structure constant in Refs. [33, 34]
but higher than the stronger bound found in Ref. [35],
for the considered value (R, S) = (36, 160). Note that
this corresponds to ∆BD/BD $ 4 × 10−3, by applying
Eq. (28), which is clearly larger than in Eq. (33). This
clearly illustrates the importance of the theoretical prej-
udices.

With, Δ ~ 100 - 400 (1000), Δt ~ 80 - 250 (500)    

∆BD

BD
=−0.6r(1+S)

∆h
h
−0.5rR

∆α
α from mπ
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−0.32 × 10−10 [8] and the second given by 7Li/H =

(2.33 ± 0.64) × 10−10 when higher surface temperatures
are assumed [12] and is represented with dashed lines.
The dotted vertical line indicates the standard BBN re-
sults (i.e. ∆h/h = 0) for η = 6.12 × 10−10.
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FIG. 2: Primordial abundances of 4He, D, 3He and 7Li when
allowing a variation of the Yukawa couplings. The horizontal
cross-hatched regions depict the 2σ spectroscopic data. We
have assumed 3 values for S: S = 80 (red lines), S = 160 (blue
lines) and S = 320 (magenta lines) for η = 6.12 × 10−10.

We recall that there is significant model dependence in
several of the assumed relations between the fundamen-
tal parameters. For example, in Eq. (21), we adopted
c/h2 = 1 (that is S " 160). However, the origin of
the dependence between v and h depends on physics be-
yond the standard model, and c/h2 could be significantly
larger or smaller than unity.

As one can see from Fig. 2, each of the light elements,
D, 4He, and 7Li show strong dependences on ∆h/h. In
fact, D/H provides us with the strongest constraint (un-
der the hypothesis that α is constant) which for S = 160

is,

−1.2 × 10−3 <
∆h

h
< 1.6 × 10−5. (35)

Using Eq. (25), this bound translates to −3.9 × 10−2 <
∆BD/BD < 2.9× 10−2. Note that we have not used the
7Li abundance to set the lower bound on ∆h/h. However,
we also observe that for values of S∆h/h >∼ 2.6 × 10−3

(S∆h/h >∼ 1×10−3 for the second range of observational
7Li), the 7Li abundance is sufficiently small so as to come
into agreement with the observational data. So long as
we do not exceed the upper bound given in Eq. (35), all
of the light elements can be brought into agreement with
data. Thus we must saturate the limit, but recall that
this conclusion is based under the restrictive assumption
that α is constant. On the other hand, it also means
that our hypothesis can be falsified by decreasing the
error bars of either 7Li or D.

In Fig. 3, we show the individual contributions of the
varying BBN quantities to the light element abundances.
The effects of the variations of τn, Q, BD, and me can be
seen explicitly. The curves for me are due to the effects
of the electron mass on the expansion of the universe: me

effectively enters in the r.h.s. of the Friedmann equation,
affecting the timing and magnitude of the photon bath
reheating following electron-positron annihilations. This
effect is however very small as seen in Fig. 3. The effect
of varying me in the weak rates is accounted for in the
overall variation of τn. The electron mass does not affect
the abundance of any of the isotopes, however, τn and
Q have a significant effect on 4He leaving deuterium and
7Li almost unchanged.

From the 4He data, we deduce the bounds, −7.5 ×
10−2 ! ∆BD/BD ! 6.5×10−2, −8.2×10−2 ! ∆τn/τn !
6× 10−2 and −4× 10−2 ! ∆Q/Q ! 2.7× 10−2 at 2σ. A
variation of the deuterium binding energy affects all the
abundances, in particular, the deuterium data sets the
tighter constraint −4 × 10−2 ! ∆BD/BD ! 3 × 10−2.
Interestingly, these bounds are equivalent to the ones ob-
tained from the constraint (35) considering the interre-
lations between the fundamental parameters. The 7Li
abundance is brought in concordance with spectroscopic
observations provided its change falls within the interval
−7.5×10−2 ! ∆BD/BD ! −4×10−2. We thus conclude
that BD is the most important parameter connected to
the discrepancy of the 7Li abundance, and again, we see
that there exists a window allowing for consistent 7Li and
deuterium abundances with data.

One may also consider the effect of the variation of
the nucleon mass. The proton and neutron reduced mass
enters as a factor (m−1

p + m−1
n )

1

2 in the p(n, γ)D rate.
For variations of the order we are considering, this effect
is negligible.

For S = 160,
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FIG. 3: Primordial abundances of the light nuclei as a func-
tion of the relative variation of me (red lines), τn (green lines),
Q (magenta lines), and BD (blue lines) with the same con-
ventions as in Fig. 2.

C. Allowing for ∆α/α != 0

We now allow the fine structure constant to vary and
we further assume that it is tied to the variation of the
Yukawa couplings according to ∆h/h = (1/2)∆α/α, us-
ing Eqs. (28)–(30). The results are shown in Fig. 4 where
the abundances are depicted for three values of the pa-
rameter R. Comparison of this figure with Fig. 2 shows
the effect of including the variation in α. Not consider-
ing 7Li, the tighter bounds on ∆h/h are again given by
the deuterium abundance and are comparable in order of
magnitude to the ones found in Eq. (35):

−1.8 × 10−5 <
∆h

h
< 2.1 × 10−5 , (36)

for R = 36 and

−2 × 10−5 <
∆h

h
< 2.6 × 10−5 , (37)

for S = 160 and R = 60.
While these limits are far more stringent than the one

found in Ref. [25], it is consistent with those derived in
Refs. [26, 27] where coupled variations were considered.
Once again, for a variation near the upper end of the
range (36) and (37), we can simultaneously fit all of the
observed abundances.
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FIG. 4: Primordial abundances of 4He, D, 3He and 7Li as a
function of ∆h/h = (1/2)∆α/α when allowing a variation of
the fine structure constant for three values of the R parameter:
R = 0 (red lines), R = 36 (blue lines) and R = 60 (magenta
lines).

As noted above, a variation of α induces a multitude
of changes in nuclear cross sections that have not been
included here. We have checked, however, that a varia-
tion of ∆α/α ≈ 4 × 10−5 leads to variations in the reac-
tion rates (numerically fit), mainly through the Coulomb
barrier, of the most important α-dependent reactions in
BBN [25] that never exceed one tenth of a percent in
magnitude.

Before concluding, we return once more to the ques-
tion of model dependence. We have parametrized the

For S = 160, R = 36,



Finally,
!"/" = 2!h/h, S = 160.
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Summary

• While possible, there are many constraints on 
the variations of α

• BBN constraints (when coupled variations are 
considered) are of order 10-5

• Solution to 7Li problem?


