Charge Density of the Neutron

Gerald A. Miller
University of Washington

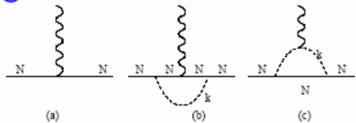
arXiv:0705.2409

What is charge density at the center of the neutron?

- Neutron has no charge, but charge density need not vanish
- Is central density positive or negative?

Neutron: Need π cloud effect at low Q^2

Cloudy Bag Model 1980



Relativistic treatment needed Feynman graphs
Light front cloudy bag model LFCBM 2002

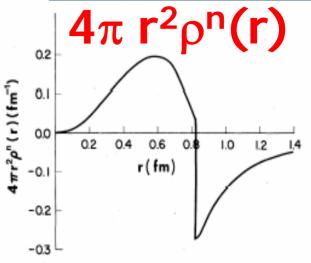


FIG. 11. Neutron charge density.

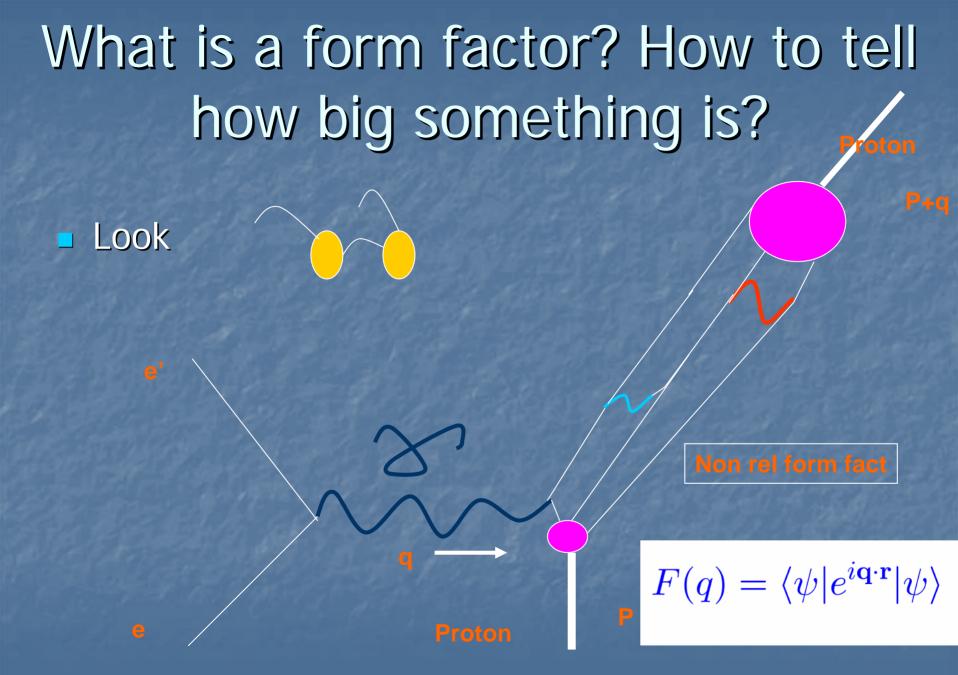
One gluon exchange also gives positive central charge density

- Friar, Ellis et al, Isgur & Karl
- dd one gluon interaction is repulsive

Main question today: obtain model independent information

Outline

- Electromagnetic form factors
- Light cone coordinates, kinematic subgroup
- Generalized parton distribution functions
- Bit of math
- Two dimensional Fourier transform of F₁, gives ρ(b) Soper '77
- Data analysis



Definitions

$$\langle N, \lambda' p' | J^{\mu} | N, \lambda p \rangle = \bar{u}_{\lambda'}(p') [F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \sigma^{\mu\nu} \frac{(p'-p)_{\nu}}{2 M_p}] u_{\lambda}(p)$$

$$G_E = F_1 - \frac{Q^2}{4M_N^2} F_2 , \qquad G_M = F_1 + F_2$$

Interpretation- Breit frame $\vec{p}' = -\vec{p}$

G_E is helicity flip matrix element of J⁰

G_M is helicity conserving matrix element of Jⁱ

Interpretation of Sachs - G_E(Q²) is Fourier transform of charge density

Correct non-relativisticaly

Non-relativistic two particle:

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, t) = e^{i\mathbf{P}\cdot\mathbf{R} - i(\frac{P^2}{2M} - \epsilon)t}\phi(\mathbf{r})$$

Relativity: $(\mathbf{r}_1, t_1), (\mathbf{r}_2, t_2) \ t_1 \neq t_2$

 $e^{i H(t_1-t_2)}$ Interactions!

φ is frame dependent, interpretation of Sachs wrong

Why relativity if Q² M²

QCD- photon hits ≈ massless quarks

No matter how small Q^2 is, there is a boost correction that is $\propto Q^2$

$$F_1 \sim Q^2(|\psi|^2 + C/(m_q R_N)^2)$$

Light cone coordinates

"Time"
$$x^+ = (ct + z)/\sqrt{2} = (x^0 + x^3)/\sqrt{2}$$

"Evolution"
$$p^- = (p^0 - p^3)/\sqrt{2}$$

"Space"
$$x^- = (ct - z)/\sqrt{2} = (x^0 - x^3)/\sqrt{2}$$
, If $x^+ = 0$, $x^- = -\sqrt{2}z$

"Momentum"
$$p^+ = (p^0 + p^3)/\sqrt{2}$$

Transverse: "Position" b "Momentum" p

Relativistic formalismkinematic subgroup of Poincare

Lorentz transformation –transverse velocity v

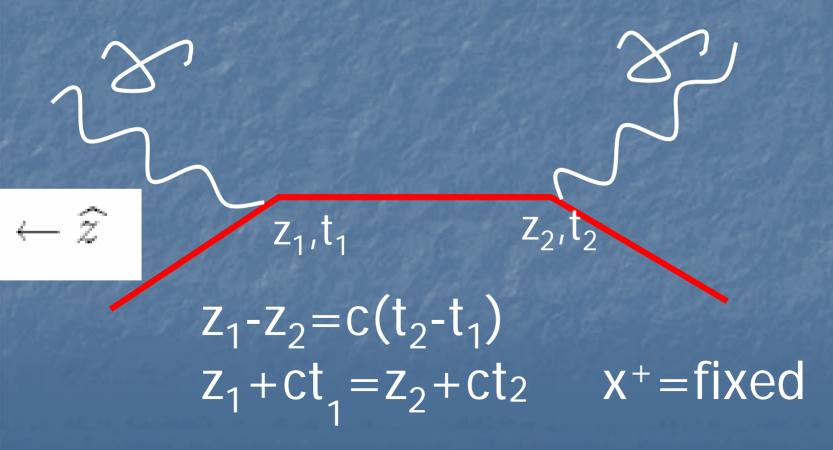
$$k^+ \rightarrow k^+, \mathbf{k} \rightarrow \mathbf{k} - k^+ \mathbf{v}$$

k- chosen so k2 not changed

Just like non-relativistic

Why light cone coordinates?

Deep inelastic scattering:



Generalized Parton Distribution

$$H_q(x,t) = \int \frac{dx^-}{4\pi} \langle p^+, \mathbf{p}', \lambda | \bar{q}(-\frac{x^-}{2}, 0) \gamma^+ q(\frac{x^-}{2}, 0) | p^+, \mathbf{p}, \lambda \rangle e^{ixp^+x^-}$$

$$H_q(x,\xi=0,t) \equiv H_q(x,t)$$

$$A^+=0$$
, $t=(p-p')^2=-Q^2=-(p'-p)^2$

Generalized Parton Distribution

$$H_q(x,t) = \int \frac{dx^-}{4\pi} \langle p^+, \mathbf{p}', \lambda | \bar{q}(-\frac{x^-}{2}, 0) \gamma^+ q(\frac{x^-}{2}, 0) | p^+, \mathbf{p}, \lambda \rangle e^{ixp^+x^-}$$

$$H_q(x,0)=q(x)$$
 (PDF)

$$F_1(t) = \sum_q e_q \int dx H_q(x,t).$$

$$H_q(x,t) = \int \frac{dx^-}{4\pi} \langle p^+, \mathbf{p}', \lambda | \bar{q}(-\frac{x^-}{2}, 0) \gamma^+ q(\frac{x^-}{2}, 0) | p^+, \mathbf{p}, \lambda \rangle e^{ixp^+x^-}$$

transverse center of mass R

$$\left| p^+, \mathbf{R} = \mathbf{0}, \lambda \right\rangle \equiv \mathcal{N} \int \frac{d^2 \mathbf{p}}{(2\pi)^2} \left| p^+, \mathbf{p}, \lambda \right\rangle$$

$$\hat{O}_q(x, \mathbf{b}) \equiv \int \frac{dx^-}{4\pi} q_+^{\dagger} \left(-\frac{x^-}{2}, \mathbf{b} \right) q_+ \left(\frac{x^-}{2}, \mathbf{b} \right) e^{ixp^+x^-}$$

Integrate over x

$$\hat{O}_q(x, \mathbf{b}) \equiv \int \frac{dx^-}{4\pi} q_+^{\dagger} \left(-\frac{x^-}{2}, \mathbf{b} \right) q_+ \left(\frac{x^-}{2}, \mathbf{b} \right) e^{ixp^+x^-}$$

$$\int dx \hat{O}_q(x, \mathbf{b}) = \frac{1}{2} q_+^{\dagger}(0, \mathbf{b}) q_+(0, \mathbf{b})$$

Density and matrix element of γ⁺

$$H_q(x,t) = \int \frac{dx^-}{4\pi} \langle p^+, \mathbf{p}', \lambda | \bar{q}(-\frac{x^-}{2}, 0) \gamma^+ q(\frac{x^-}{2}, 0) | p^+, \mathbf{p}, \lambda \rangle e^{ixp^+x^-}$$

$$\hat{O}_q(x, \mathbf{b}) \equiv \int \frac{dx^-}{4\pi} q_+^{\dagger} \left(-\frac{x^-}{2}, \mathbf{b} \right) q_+ \left(\frac{x^-}{2}, \mathbf{b} \right) e^{ixp^+x^-}$$

$$q(x, \mathbf{b}) \equiv \langle p^+, \mathbf{R} = 0, \lambda | \hat{O}_q(x, \mathbf{b}) | p^+, \mathbf{R} = 0, \lambda \rangle.$$

$$q(x,\mathbf{b}) = \int \frac{d^2q}{(2\pi)^2} e^{i\,\mathbf{q}\cdot\mathbf{b}} H_q(x,t=-\mathbf{q}^2),$$
 Burkardt

$$\hat{O}_q(x, \mathbf{b}) \equiv \int \frac{dx^-}{4\pi} q_+^{\dagger} \left(-\frac{x^-}{2}, \mathbf{b} \right) q_+ \left(\frac{x^-}{2}, \mathbf{b} \right) e^{ixp^+x^-}$$

$$q(x, \mathbf{b}) \equiv \langle p^+, \mathbf{R} = 0, \lambda | \hat{O}_q(x, \mathbf{b}) | p^+, \mathbf{R} = 0, \lambda \rangle.$$

$$\rho(b) \equiv \sum_{q} e_q \int dx \ q(x, \mathbf{b}) = \int d^2q F_1(Q^2 = \mathbf{q}^2) e^{i \mathbf{q} \cdot \mathbf{b}}.$$

Soper '77

Main result

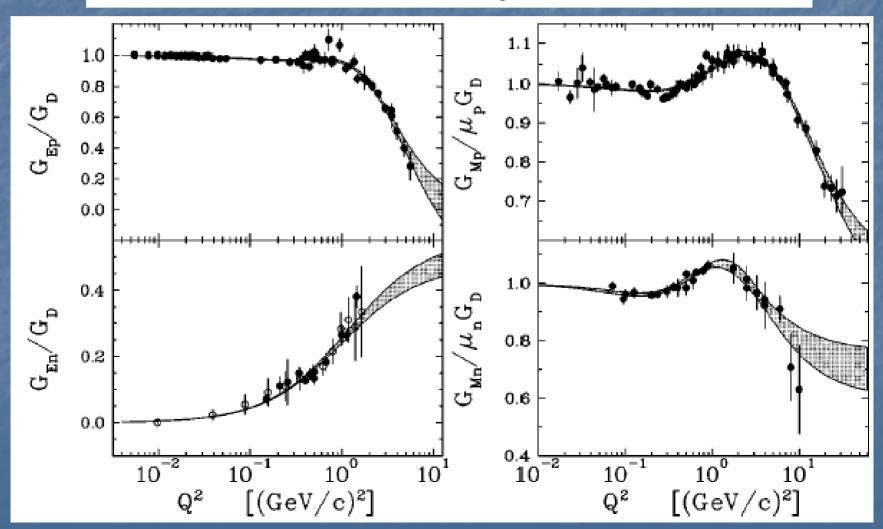
$$\rho(b) \equiv \sum_{q} e_{q} \int dx \ q(x, \mathbf{b}) = \int d^{2}q F_{1}(Q^{2} = \mathbf{q}^{2}) e^{i \mathbf{q} \cdot \mathbf{b}}.$$
Soper '77

$$\rho(b) = \int_0^\infty \frac{dQ \, Q}{2\pi} J_0(Qb) \frac{G_E(Q^2) + \tau G_M(Q^2)}{1 + \tau}$$

 $\tau = Q^2/4M^2$

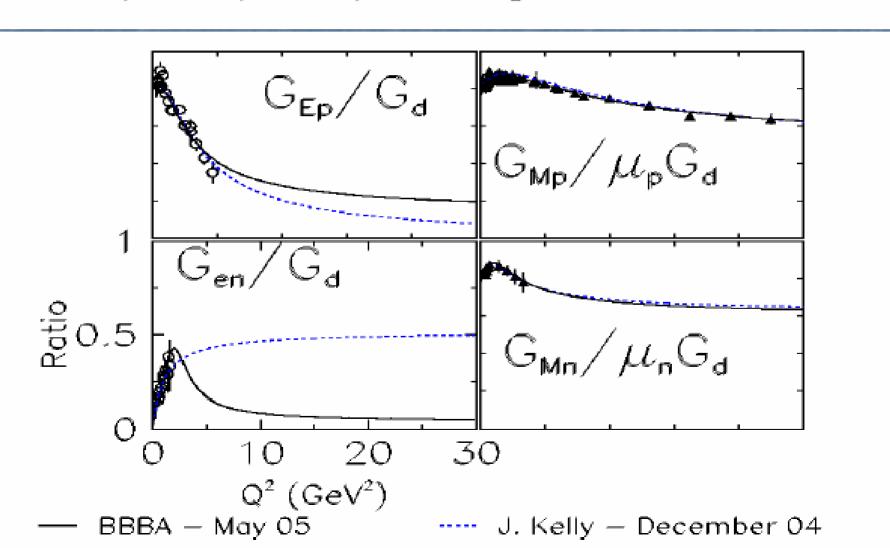
Simple parametrization of nucleon form factors

J. J. Kelly

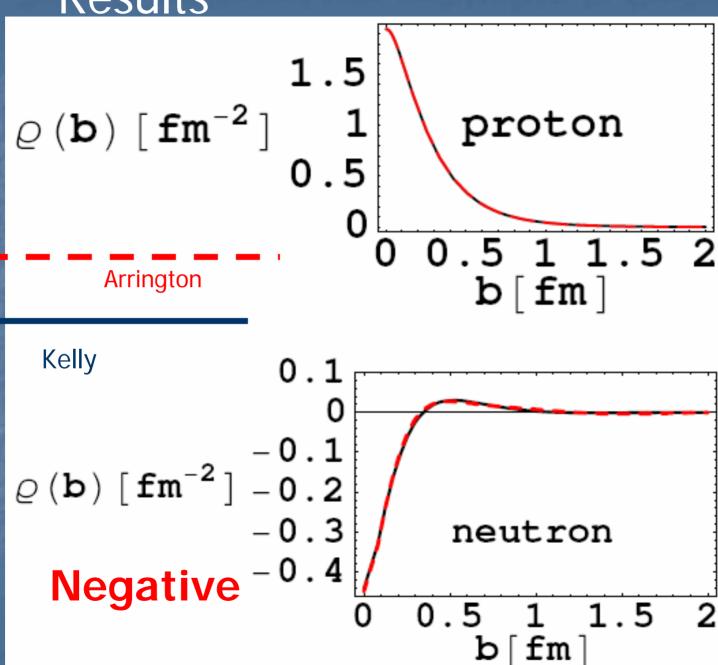


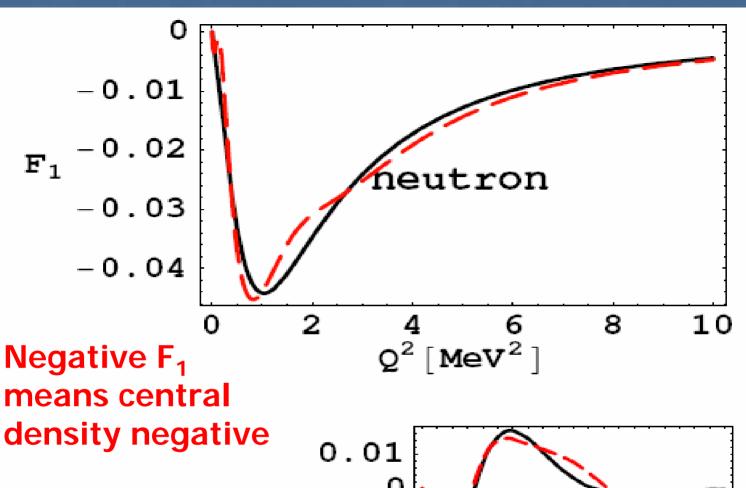
A New Parameterization of the Nucleon Elastic Form Factors

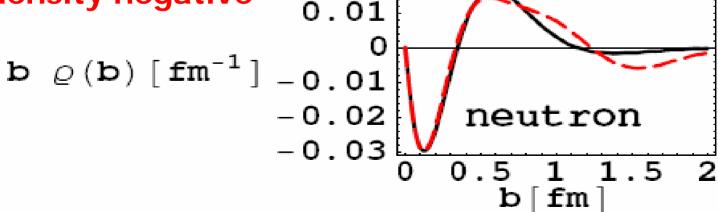
R. Bradford, A. Bodek, H. Budd, and J. Arrington



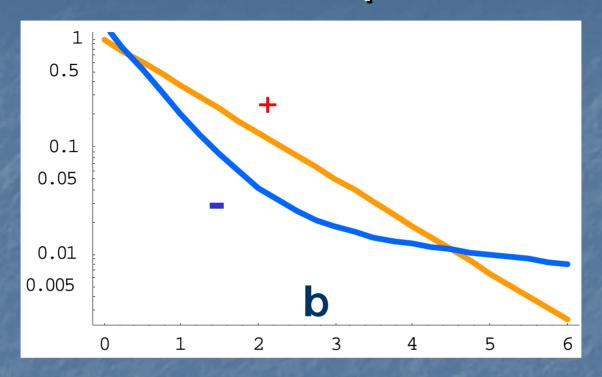
Results





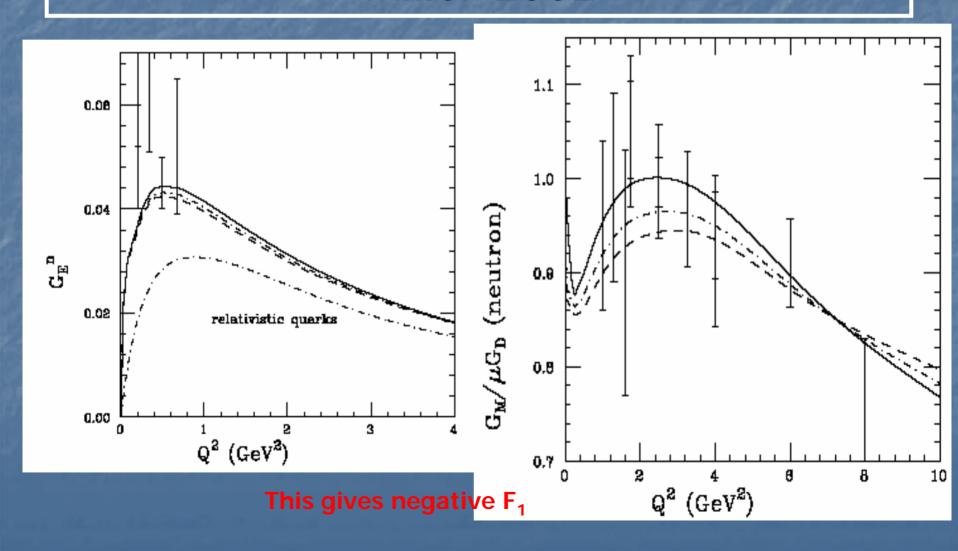


Neutron Interpretation



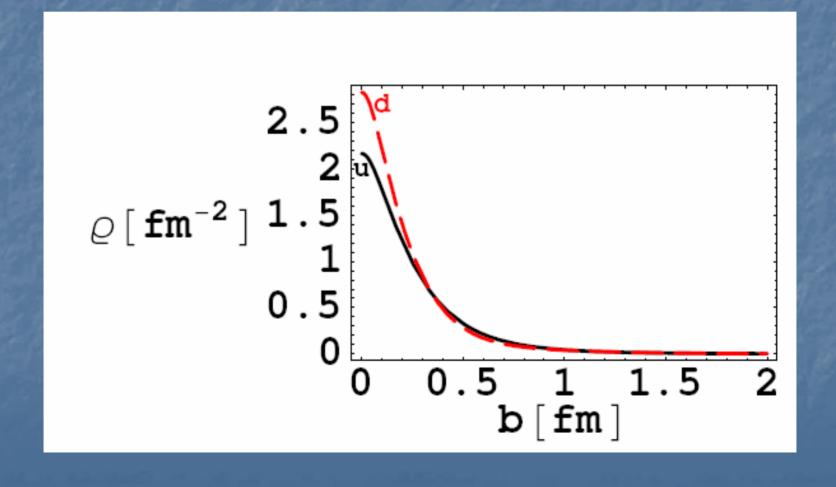
? π^- at short distance ?

Neutron Form Factors in LFCBM Miller 2002



Charge symmetry

$$\rho_u = \rho_p - \rho_n/2 \quad \rho_d = \rho_p - 2\rho_n$$



?Quark interpretation?

- b=0, high transverse momentum, low Bjorken x
- low x, sea
- u bar u is suppressed by Pauli principal,Signal & Thomas

Summary

Model independent information on charge density

$$\rho(b) \equiv \sum_{q} e_q \int dx \ q(x, \mathbf{b}) = \int d^2q F_1(Q^2 = \mathbf{q}^2) e^{i \mathbf{q} \cdot \mathbf{b}}.$$

- Central charge density of neutron is negative
- Evidence for pion cloud at large b

What do electromagnetic form factors measure?