A Search for a Permanent **E**lectric **D**ipole **M**oment of the Electron in a Solid State System

EDM & CP violation workshop Seattle, March 19, 2007

Chen-Yu Liu*,* Indiana University at Bloomington

S. K. Lamoreaux, J. Gomez, J. Boissevain, M. Espy, A. Matlachov Los Alamos National Laboratory

Features of solid state eEDM experiment

Pros:

 ${\circ}$ High number density of bare electrons \sim $10^{22}/\mathrm{cm}^3$.

PbO Cell TI Beam: $N = nV \sim 10^{16}$ $N = nV \sim 10^8$

- \circ Electrons are confined in solid \Rightarrow No motional field effect. *Bmotional* $=$ $\nu \times E$
- o Solid state sample:
	- Large magnetic response.

Cons:

- { Solid state sample:
	- \bullet High dielectric strength.
- Concerns
	- \bullet Parasitic, hysteresis solid state effects might limit the sensitivity to the EDM signals .

What are required to have Macroscopic T Nonconservation?

- W, Bialek, J. Moody, F. Wilczeck, Phys. Rev. Lett. 56, 1623 (1986)
- Proposed "EuS" near its Curie point
- \circ Requirements:
	- System can be found in which intrinsic EDM's are not screen out at the atomic level.
	- \bullet Chemical bonding does not obliterate the atomic EDM.
	- An external electric field will actually be felt by atoms in the interior of the sample.
	- \bullet The T-nonconserving effects which we seek to observe cannot be mimicked by effects associated with broken inversion symmetry in the crystal.

Figure of Merit

{ Sensitive magnetometers

- **Superconducting Quantum Interference Device (SQUID**).
- \bullet Atomic cell (non-linear Faraday effect).
- { Measure induced magnetic flux:

S. Lamoreaux, Phys. Rev. A (2002)

New experiment

EDM Enhancement Factor

of electrons in Gd³⁺ in garnet crystal

- Buhmann, Dzuba, Sushkov, Phys. Rev. A 66, 042109 (2002).
- Dzuba, Shushkov, Johnson, Safronava, Phys. Rev. A 66, 032105 (2002).
- Kuenzi, Sushkov, Dzuba, Cadogan, Phys. Rev. A 66, 032111 (2002).
- Mukhamedjanov, Dzuba, Sushkov, Phys. Rev. A 68, 042103 (2003).

$$
d_a = K_{atom} K_{CF} d_e
$$

\n
$$
\Rightarrow -2.2 \times 9.5 d_e = -20.9 d_e
$$

$$
\Delta \varepsilon = -20.9 d_e E^{\text{int}} = \frac{-20.9}{30} d_e E^{ext}
$$

$$
\Rightarrow 0.7 d_e E^{ext}
$$

FIG. 3. A schematic two-dimensional picture for penetration of $2p_{\sigma}$ orbitals of O^{2-} inside the shifted Gd³⁺.

A simple estimate of EDM Sensitivity

- ο EDM signal: $\Phi_{\sf p} = 17$ μ $\Phi_{\sf 0}$ per 10⁻²⁷e-cm.
	- with 10 kV/cm, T=10mK, A=100 cm² around GGG
- \circ SQUID noise: $\Delta \Phi_{\text{sq}} = 0.2 \mu \Phi_0 / \sqrt{t}$ (research quality)
- \circ Flux transfer = $\Phi_{sq}/\Phi_p = \sqrt{(L_{sq}L_i)/(L_p+L_i)} = 8 \times 10^{-3}$.
	- \bullet L_{squid}= 0.2 nH.
	- L_{pick-up}= 700 nH. (gradiometer)
	- \bullet L_{input}= 500 nH.
- ο $d_e = ΔΦ_{sq}/Φ_{sq} = (0.2μΦ_0/√t)/(8×10⁻³ × Φ_p) × 10⁻²⁷e$ -cm. • $d_e = 1.47 \times 10^{-27} / \sqrt{t}$ e-cm
- \circ In 10 days of averaging, $d_e \sim 10^{-30}$ e-cm.

theta 2

Garnet Crystalline Structure

Magnetic Properties of GGG (Gd₃Ga₅O₁₂)

P.Schiffer, et al. PRL **73**, 2500 (1994)

- \circ Anti-Ferromagnetic (AF) interaction on a triangular lattice
- \Rightarrow Geometrically frustrated AF magnet:
- \Rightarrow Spin glass transition at 0.4K (Limit of temperature).

- S. R. Dunsiger, et al. PRL **85**, 3504 (2000)
- spin dynamics using muon spin relaxation " The system is close to ordering but remains slowly fluctuating, at least down to 25 mK".

(Spin Glass Transition happens at a much lower T)

Possible solution: spin dilution Gd(Y)GG

Susceptibility χ_{m} Measurements

The measured suscepbtibility is as large as expected.

Electrodes and Magnetic flux pick-up coils (planar gradiometer)

- Common mode rejection of external uniform B field and fluctuations.
- Enhancement of sample flux pick-up.

 $R_1 = 2$ cm $R_2 = 2$ cm $R_3 = \sqrt{(R_1^2 + R_2^2)} = 3.42$ cm **LG =700nH for 10**μ**m dia. wire =500nH for 100**μ**m dia. Wire (Nb superconducting wire)**

CMRR = 238⇒ **0.4% area mismatch**

 X (cm)

e**EDM** Measurement Sequence

- Reverse HV polarity
- monitor sample for magnetization change

Instrumentation

High Voltage Electrodes: **Macor** coated with **graphite.** Magnetic Shield:

- Superconducting **Pb** foils (2 layers)
	- $\, \circ \,$ S factor $> 10^9$
- \bullet • High μ **Metglas** alloy ribbons in cryostat.
	- $\, \circ \,$ S factor ~ 100
- \bullet An additional cylinder of "**Conetic**" sheet outside the cryostat.
	- $\, \circ \,$ S factor ~ 10
- ${\circ}$ The whole assembly is immersed in **L-He bath**, and will be cooled by a dilution refrigerator. (3.5mW at 120mK)

Capacitors between HV shield to the chamber ground, ground plans to the chamber ground.

Alleviate the micro-sparks in HV cables from going into the electrodes

- Star Cryoelectronics 1165 SQUID:
	- Fails after a few thermal cycles.
	- Current lock mode built-in
- Quantum Design DC SQUID, Model 50:
	- Very sturdy

HV lines

• Flux lock mode

Connection box (RF shielded)

Closed Pb box, containing a SQUID (solder sealed)

To pickup coil To PFL circuit box, Cutside the cryostat SQUID in Pb box

SQUID Noise Spectrum

•One layer of Pb superconducting foil

- 2 layers of Pb superconducting foil
- Background ~ Intrinsic SQUID noise
- 1/f corner of SQUID noise < 1Hz

Disk Util Def Disk: Internal

Date: 06-27-05 Time: 10:32:00 PM

^e**EDM Limit**

Vasil'ev and Kolycheva, Sov. Phys. JETP, **47** [2] 243 (1978) $d_e = (0.81 \pm 1.16) \times 10^{-22}$ e-cm

Most Run in Oct. 2006Accumulated EDM: $(1.7 \pm 5.2) \times 10^{-23}$ e-cm

December 2005

Instabilities in SQUID sensor output

 \circ Adding current bypass capacitors to the ground greatly reduce the high frequency spark signals into the SQUID.

- \circ Stability of the SQUID feedback circuit.
	- \bullet A larger RC constant of the FB circuit makes the SQUID operation less susceptible to frequent HV polarity switches.

Leakage Current

$$
\circ
$$
 Flux = (-7.43 ± 2.2) $\mu \Phi_0$

- Field = $(1.28 \times 10^{\text{-}14} \text{ gauss})/0.008 = 1600 \text{ f}$ gauss
- \circ 10fA, a quarter turn gives 1 f-guass
- \circ I = 16 pA (to account for the field)

- \circ I_{volume}=V/R_{volume}
	- 1 kV/(10^{16} Ω cm $*1$ cm/ 12 cm 2) = 1.2 pA
	- Resistivity should be larger at low T

HV supply drift

Sampled at 1kHz

Measured Ripples: 10mV/1V=1%Beat ~ 30 Hz Vacuum tube filament drive: 20kHz

HV supplies spec: (PS350, 5kV, 25W) Ripple: 15ppm

 $\frac{dV}{dt}$ < 3.6 × 10⁻⁴ V / s = 0.36 ppm / s *dt* $I = C \frac{dV}{dr}$ C=28pF $I<10fA$ Improve the feedback cirtuit

Some Observations

- Ω Current monitor is contaminated by the channel crosstalk due to HV monitors.
	- z $LC < 10^{-10}$ A
- Ω Correlation between flux and HV is not conclusive.
- \circ SQUID flux measurement seems to be affected by the data filtering (need further investigations).

Other Systematic Effects

${\bigcirc}$ Displacement current at field reversals.

- \bullet Generate large field (helps to check SQUID functionality).
- \bullet This effect is both spatially and temporally orthogonal to the true signal.
- \bullet Magnetize materials around ???
- \bullet Modulate the reversal frequency (or ramping time) to measure this artifact
	- \circ the induced magnetic field is proportional to the frequency, but the electric field is not.

Solid State Effects

- ${\circ}$ T-violating EDM effect: Magnetization of the sample in response to an electric field (in the absence of an external magnetic field)
- ${\circ}$ Possible crystal effects:
	- z An interaction energy linear in the magnetization could arise if
		- \circ The material itself spontaneously breaks T invariance: choose a sample without magnetic order.
	- "dirt effect" due to residual magnetic fields: $\mu_e S \cdot (T \cdot E) \cdot H$

W, Bialek, J. Moody,

- F. Wilczeck,
-
- Phys. Rev.
- Lett. 56, 1623
- (1986)

 \circ related to the electric-field-dependent g -value shits in magnetic-resonance experiments.

 μ_e T $\|H\| << d$ _e

- z Tensor T vanishes in inversion-symmetric crystal structure.
	- \circ Point defects and substitutional impurities could pair up to restore inversion symmetry.
	- \circ Defect concentration of 1:10⁹ should impose no problem.

Conclusions

- { **The current setup** is sensitive to eEDM signal ~ 10-23 e- cm using a hour of data.
- o The prototype system cooled to 40 mK and 2 days of data averaging should have an eEDM sensitivity of 10⁻²⁷ e-cm.
	- z Keep on understanding the non-zero background.
		- \circ Eliminate channel crosstalks
		- \circ Stabilize operations of SQUID (improved RF shields)
		- \circ Implement multiple SQUID sensors
		- \circ Stabilize HV supply
		- \circ Couple to a DR
- \circ Further improvements (towards 10⁻³⁰ e-cm):
	- O Scale up the prototype system
	- Spin dilution: Gd(Y)GG
	- employ better magnetometers