Schiff Theorem and Nuclear Schiff Moment¹

Cheng-Pang Liu

T-16, LANL

INT Workshop on EDMs and CP-Violation, Seattle, WA Mar. 20, 2007

In collaboration with W. Haxton (UWa & INT), M. Ramsey-Musolf (CalTech & UWisc-Madison), R. Timmermans and L. Dieperink (KVI)

Outline

2 Schiff Theorem

- General Consideration
- The Screening

Residual EDM

- Relativistic Effects
- Finite-Size Effects
- Magnetic Effects

ъ

5990

EDM Status

In units of *e*-*cm*, selected EDM limits are:

Particle	EDM limit	System	SM Prediction	New Physics
e	$1.9 imes 10^{-27}$	²⁰⁵ TI atom	10 ⁻³⁸	10 ⁻²⁷
μ	1.1×10^{-19}	rest frame <i>Ē</i>	10 ⁻³⁵	10 ⁻²²
au	$3.1 imes 10^{-16}$	$e^+e^- \rightarrow \tau^+\tau^-\gamma$	10 ⁻³⁴	10 ⁻²⁰
р	$6.5 imes 10^{-23}$	TIF molecule	10 ⁻³¹	10 ⁻²⁶
n	$2.9 imes 10^{-26}$	UCN	10 ⁻³¹	10 ⁻²⁶
¹⁹⁹ Hg	2.1×10^{-28}	atom cell	10 ⁻³³	10 ⁻²⁸

• Most precise measurements are taken in neutral systems.

• Results for charged particles (except μ) are inferred.

5990

New-Generation EDM Searches

A non-exhaustive list:

Leptonic	EDMs	Hadronic EDMs		
System	Group	System	Group	
Cs (trapped)	Penn St.	<i>n</i> (UCN)	SNS	
Cs (trapped)	Texas	<i>n</i> (UCN)	ILL	
Cs (fountain)	LBNL	<i>n</i> (UCN)	PSI	
YbF (beam)	Imperial	<i>n</i> (UCN)	Munich	
PbO (cell)	Yale	¹⁹⁹ Hg (cell)	Seattle	
HBr ⁺ (trapped)	JILA	¹²⁹ Xe (liquid)	Princeton	
PbF (trapped)	Oklahoma	²²⁵ Ra (trapped)	Argonne	
GdIG (solid)	Amherst	^{213,225} Ra (trapped)	KVI	
GGG (solid)	Yale/Indiana	²²³ Rn (trapped)	TRIUMF	
muon (ring)	J-PARC	deuteron (ring)	BNL?	

- All leptonic searches except μ target at d_e (indirectly inferred).
- Most of them are subject to the shielding effects.

The Road Map

Motivation Schiff Theorem Residual EDM Summary

The Road Map

Theorem

For a NR system made up of *point*, charged particles which interact *electrostatically* with each other and with an arbitrary external field, the *shielding is complete*. (Schiff, 63)

- Classical picture: The re-arrangement of constituent charged particles in order to keep the whole system stationary.
- Quantum-Mechanical description: Schiff (63), Sandars (68), Feinberg (77), Sushkov, Flambaum, and Khriplovich (84), Engel, Friar, and Hayes (00), Flambaum and Ginges (02) ...

What this implies for atoms? (molecules? solids? neutron?)

- The measurability of atomic EDMs is severely constrained.
- One has to look for the loopholes (Schiff ff 63, Sandars 68) in
 - relativistic effects (electron)
 - finite-size effects (nucleus)
 - magnetic interactions (electron–nucleus)
 - In non-EM exotica such as ₱↑ electron-nucleon interaction

< 口 > < 同

Theorem

For a NR system made up of point, charged particles which interact electrostatically with each other and with an arbitrary external field, the shielding is complete. (Schiff, 63)

- Classical picture: The re-arrangement of constituent charged particles in order to keep the whole system stationary.
- Quantum-Mechanical description: Schiff (63), Sandars (68), Feinberg (77), Sushkov, Flambaum, and Khriplovich (84), Engel, Friar, and Hayes (00), Flambaum and Ginges (02) ...

What this implies for atoms? (molecules? solids? neutron?)

- The measurability of atomic EDMs is severely constrained.
- One has to look for the loopholes (Schiff ff 63, Sandars 68) in
 - relativistic effects (electron)
 - finite-size effects (nucleus)
 - magnetic interactions (electron-nucleus)
 - non-EM exotica such as ₱↑ electron-nucleon interaction

< n b < A

s Alamos ∢) Q, (≁

The Atom under Detection (weak $\boldsymbol{E}^{(\text{ext})}$)

The whole atomic EDM consists of:

- Intrinsic EDMs of electrons and nucleus
 - de is elementary.
 - *d*_{nuc} has contributions from *d*_{n,p} and *₱*↑ NN interaction, parametrized by *C*^{had}.
- **Polarization effects** by the $\notP \vec{T}$ electron–nucleus interactions \tilde{V}_{e-nuc}
 - Nuclear excitations are much less effective since $\Delta E_{\rm e}/\Delta E_{\rm nuc} \sim 10^{-6}.$
 - *Ṽ_{e−nuc}* contains leptonic, semi-leptonic, and hadronic
 ₱↑ sources.

The Atom under Detection (weak $\boldsymbol{E}^{(\text{ext})}$)

The whole atomic EDM consists of:

- Intrinsic EDMs of electrons and nucleus
 - d_e is elementary.
 - d_{nuc} has contributions from $d_{n,p}$ and $\not P T$ NN interaction, parametrized by \tilde{C}^{had} .
- Polarization effects by the $\not\!\!P \dot{T}$ electron–nucleus interactions $\tilde{V}_{\theta-\text{nuc}}$
 - Nuclear excitations are much less effective since $\Delta E_{\rm e}/\Delta E_{\rm nuc} \sim 10^{-6}.$
 - *Ṽ_{e−nuc}* contains leptonic, semi-leptonic, and hadronic
 ₱↑ sources.

The Atom under Detection (weak $\boldsymbol{E}^{(\text{ext})}$)

The whole atomic EDM consists of:

- Intrinsic EDMs of electrons and nucleus
 - d_e is elementary.
 - d_{nuc} has contributions from $d_{n,p}$ and $\not P T$ NN interaction, parametrized by \tilde{C}^{had} .
- Polarization effects by the ₱† electron–nucleus interactions \tilde{V}_{e-nuc}
 - Nuclear excitations are much less effective since $\Delta E_{e}/\Delta E_{nuc} \sim 10^{-6}$.
 - *Ṽ_{e-nuc}* contains leptonic, semi-leptonic, and hadronic
 P↑ sources.

Motivation Schiff Theorem Residual EDM Summary

General Consideration The Screening

Contributions to PT Electron–Nucleus Interaction

• Red vertices denote the $\not P T$ couplings: (a) d_e , (b) d_{nuc} , (c) κ_e^{PS} , κ_N^{PS} etc.

< 🗆

590

Motivation Schiff Theorem Residual EDM Summary General G

General Consideration The Screening

Contributions to PT Electron–Nucleus Interaction

• Red vertices denote the PT couplings: (a) d_{e} , (b) d_{nuc} , (c) κ_{e}^{PS} , κ_{v}^{PS} etc.

What is inside of diagram (b) which involves nuclear EDM?

Formalism: Hamiltonian

The full atomic Hamiltonian:

$$H_{\rm atom} = H_0 + H_l$$

• The unperturbed term describes the atom (PT)

$$H_{0} = \sum_{i=1}^{Z} \left\{ \left(\beta_{i} \, m_{e} + \boldsymbol{\alpha}_{i} \cdot \boldsymbol{p}_{i}\right) + \frac{\alpha}{2} \left(\phi_{i}^{(e)} - \boldsymbol{\alpha}_{i} \cdot \boldsymbol{A}_{i}^{(e)}\right) - \alpha \left(\phi_{i}^{(nuc)} - \boldsymbol{\alpha}_{i} \cdot \boldsymbol{A}_{i}^{(nuc)}\right) \right\} + H_{nuc}$$

- Index *i* denotes the *i*th electron.
- $\phi_i^{(e)}$ and $\phi_i^{(nuc)}$ are the Coulomb potentials from other electrons and nucleus (total charge, quadrupole etc.)
- $A_i^{(e)}$ and $A_i^{(nuc)}$ are the vector potentials from other electrons (Breit interaction) and nucleus (hyperfine interaction etc.)
- To keep the most general form, just assume we have the solution, either w/o the conventional factorization of electron and nuclear wave functions.

$$H_{0}\left|\Psi
ight
angle=E\left|\Psi
ight
anglepprox\left(E_{e}+E_{
m nuc}
ight)\left|\psi_{e}
ight
angle\otimes\left|\psi_{
m nuc}
ight
angle$$

• The perturbed term contains the following:

$$H_{l} = V_{e}^{(\text{ext})} + V_{\text{nuc}}^{(\text{ext})} + \tilde{V}_{e}^{(\text{ext})} + \tilde{V}_{\text{nuc}}^{(\text{ext})} + \tilde{V}_{e}^{(\text{int})} + \tilde{V}_{\text{nuc}}^{(\text{int})}$$

• $V_e^{(\text{ext})}$ and $V_{\text{nuc}}^{(\text{ext})}$ are EM interactions of electrons and nucleus with the external field, $O(E^{(\text{ext})})$

$$V_{\boldsymbol{\theta}}^{(\text{ext})} = -\alpha \sum_{i=1}^{Z} \left(\phi_{i}^{(\text{ext})} - \boldsymbol{\alpha}_{i} \cdot \boldsymbol{A}_{i}^{(\text{ext})} \right) \quad V_{\text{nuc}}^{(\text{ext})} = \alpha \left(Z \phi_{0}^{(\text{ext})} - \boldsymbol{\mu}_{\text{nuc}} \cdot \boldsymbol{B}_{0}^{(\text{ext})} \right) + \dots$$

• $\tilde{V}_{e}^{(ext)}$ and $\tilde{V}_{nuc}^{(ext)}$ are $\not\!\!P T$ EM interactions of electrons and nucleus with the external field, $O(\tilde{G}_F E^{(ext)})$

$$\tilde{V}_{\boldsymbol{\theta}}^{(\text{ext})} = -\alpha \sum_{i=1}^{Z} \boldsymbol{d}_{\boldsymbol{\theta}} \beta_{i} \left(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{E}_{i}^{(\text{ext})} + i \, \boldsymbol{\alpha}_{i} \cdot \boldsymbol{B}_{i}^{(\text{ext})} \right) \quad \tilde{V}_{\text{nuc}}^{(\text{ext})} = -\alpha \, \boldsymbol{d}_{\text{nuc}} \cdot \boldsymbol{E}_{0}^{(\text{ext})} + \dots$$

*V*_e^(int) and *V*_{nuc}^(int) are *₱†* EM interactions between electrons and nucleus, O(*G_F*)

$$\tilde{V}_{\mathbf{e}}^{(\mathrm{int})} = -\alpha \sum_{i=1}^{Z} \mathbf{d}_{\mathbf{e}} \beta_{i} \left(\mathbf{\sigma}_{i} \cdot \mathbf{E}_{i}^{(\mathrm{int})} + i \, \mathbf{\alpha}_{i} \cdot \mathbf{B}_{i}^{(\mathrm{int})} \right) \quad \tilde{V}_{\mathrm{nuc}}^{(\mathrm{int})} = -\alpha \sum_{i=1}^{Z} \left(\widetilde{\phi}_{i}^{(\mathrm{nuc})} - \mathbf{\alpha}_{i} \cdot \widetilde{\mathbf{A}}_{i}^{(\mathrm{nuc})} \right)$$

Formalism: Multipole Expansion

The spherical multipole expansion for nuclear potential relies on

$$\frac{1}{|\mathbf{x} - \mathbf{y}|} = \sum_{J \ge 0, M} \frac{4\pi}{2J + 1} \frac{1}{x^{2J+1}} \left[\underbrace{1}_{(a)} + \underbrace{\theta(\mathbf{y} - \mathbf{x}) \left(\frac{x^{2J+1}}{y^{2J+1}} - 1 \right)}_{(b)} \right] \mathcal{Y}_{J}^{M*}(\mathbf{x}) \mathcal{Y}_{J}^{M}(\mathbf{y})$$

- x and y are electronic and nuclear coordinates.
- $\mathcal{Y}_{J}^{M}(\mathbf{r}) \equiv r^{J} Y_{J}^{M}(\hat{r})$ is the solid harmonics.
- (a) terms define the normal long-ranged multipoles (field point **x** away from source points **y**).
- (b) terms define the local multipoles (field point x inside source points y), this leads to contact interactions.
- Notations:

$$\hat{C}_{J}^{M} = \int d\mathbf{y} (\mathbf{a}) \mathcal{Y}_{J}^{M}(\mathbf{y}) \hat{\rho}(\mathbf{y}) \quad \hat{M}_{J}^{M} = \int d\mathbf{y} (\mathbf{a}) \left[\mathcal{Y}(\mathbf{y}) \otimes \hat{\mathbf{j}}(\mathbf{y}) \right]_{J}^{M}$$

$$\hat{C}_{J}^{M}(\mathbf{x}) = \int d\mathbf{y} (b) \mathcal{Y}_{J}^{M}(\mathbf{y}) \hat{\rho}(\mathbf{y}) \quad \hat{\mathcal{M}}_{J}^{M}(\mathbf{x}) = \int d\mathbf{y} (b) \left[\mathcal{Y}(\mathbf{y}) \otimes \hat{\mathbf{j}}(\mathbf{y}) \right]_{J}^{M}$$

うるつ

Schiff Theorem in a Nutshell

The energy shift of order $O(\tilde{G}_F E^{(ext)})$ contains:

1st-order in perturbation expansion

$$\Delta \textit{E}^{(1)} = \langle \Psi_0 | \; \widetilde{\textit{V}}_{\textit{d}_{\Theta}}^{(ext)} + \widetilde{\textit{V}}_{\textit{d}_{nuc}}^{(ext)} \, | \Psi_0 \rangle$$

2nd-order in perturbation expansion

$$\Delta E^{(2)} = \sum_{n} \frac{-1}{E_0 - E_n} \left\{ \left\langle \Psi_0 \right| V_e^{(\text{ext})} \left| \Psi_n \right\rangle \left\langle \Psi_n \right| \widetilde{V}_{d_e}^{(\text{int})} + \widetilde{V}_{d_{\text{nuc}}}^{(\text{int})} \left| \Psi_0 \right\rangle + \text{c.c.} \right\}$$

The trick to sum $\Delta E^{(1)}$ and $\Delta E^{(2)}$ is to re-write $\widetilde{V}_{d_e}^{(int)} + \widetilde{V}_{d_{nuc}}^{(int)} = [\tilde{O}_{d_e} + \tilde{O}_{d_{nuc}}, H_0] + \dots,$

so one can apply the closure to the commutator term and get

$$\Delta E = \langle \Psi_0 | \ \widetilde{V}_{d_{\theta}}^{(\text{ext})} + \ \widetilde{V}_{d_{\text{nuc}}}^{(\text{ext})} - [V_{\theta}^{(\text{ext})} \ , \ \widetilde{O}_{d_{\theta}} + \ \widetilde{O}_{d_{\text{nuc}}}] | \Psi_0 \rangle + \dots$$

Why? Precision consideration!

Shielding of Electron EDM

The key relation is

$$\widetilde{V}_{de}^{(\text{int})} = \sum_{i=1}^{Z} \left[-\frac{d_{e} \beta \sigma_{i} \cdot \nabla_{i}}{\sigma_{i} \cdot \nabla_{i}}, H_{0} \right] + 2 d_{e} \beta i \gamma_{5} \left(\boldsymbol{p}_{i}^{2} + \alpha \boldsymbol{A}_{i}^{(\text{int})} \cdot \boldsymbol{p}_{i} \right)$$

Therefore

$$\sum_{i=1}^{Z} [V_{e}^{(\text{ext})}, -d_{e} \beta \sigma_{i} \cdot \nabla_{i}] = -\widetilde{V}_{de}^{(\text{ext})} + \dots$$

so $\widetilde{V}_{d_e}^{(\text{ext})}$ is completely canceled.

- The residual interaction contains γ₅ which connects the large and small components of a Dirac wave function, so vanishes in the NR limit.
- The omitted "..." terms are non-vanishing when there exists external vector potential and of the relativistic order $Z^2 \alpha^2$.

Shielding of Nuclear EDM

The key relation is

$$\widetilde{V}_{d_{\text{nuc}}}^{(\text{int})} = -\alpha \sum_{i=1}^{Z} \mathbf{d}_{\text{nuc}} \cdot \frac{\mathbf{x}}{\mathbf{x}^{3}} = \sum_{i=1}^{Z} \left[-\frac{\mathbf{d}_{\text{nuc}}}{Z} \cdot \nabla_{i} , \ \mathcal{H}_{0} \right] - \left[-\frac{\mathbf{d}_{\text{nuc}}}{Z} \cdot \nabla_{i} , \ \Delta \mathcal{H}_{0} \right]$$

Therefore

$$\sum_{i=1}^{Z} \left[V_{\boldsymbol{\theta}}^{(\text{ext})}, -\frac{\boldsymbol{d}_{\text{nuc}}}{Z} \cdot \boldsymbol{\nabla}_{i} \right] = - \widetilde{V}_{\boldsymbol{d}_{\text{nuc}}}^{(\text{ext})} + \dots$$

so $\widetilde{V}_{d_{\text{nuc}}}^{(\text{ext})}$ is completely canceled.

- The residual interaction depends on ΔH_0 which involves interactions with nuclear multipoles C_0 , C_2 , C_2 etc. (vanish in the point-like limit) and M_1 , M_1 , M_3 etc. (which are not electrostatic).
- The omitted "..." terms are non-vanishing when the external vector potential exhibits the property that $\nabla_i A_i^{(\text{ext})} + \nabla_j A_i^{(\text{ext})} \neq 0$.

うるつ

Notations

For the following discussion, we adopt the notations:

As most EDM measurements exploit the atomic *s*-*p* transitions, for \tilde{V}_{e-nuc} being mostly short-ranged, we will just concentrate on \hat{O} 's with $\Delta L_e = 1$.

Relativistic Effects of Electron

The residual interactions (Lindroth et al., 89) are

$$\hat{\mathcal{O}}_{e}^{(\text{ext})} = 2 \, i \, d_{e} \, \sum_{i=1}^{Z} \, \beta_{i} \, \gamma_{5} \, \alpha \, \boldsymbol{A}_{i}^{(\text{ext})} \cdot \boldsymbol{p}_{i}$$
$$\hat{\mathcal{O}}_{e}^{(\text{int})} = 2 \, i \, d_{e} \, \sum_{i=1}^{Z} \, \beta_{i} \, \gamma_{5} \left(\boldsymbol{p}_{i}^{2} + \alpha \, \boldsymbol{A}_{i}^{(\text{int})} \cdot \boldsymbol{p}_{i} \right)$$

Another equivalent way (Sandars, 68) is re-writing the Dirac β matrix in EDM interaction as 1+(β - 1), and applying the closure only to the first term "1". And this gives

$$\hat{\mathcal{O}}_{e}^{(\text{ext})} = d_{e} \sum_{i=1}^{Z} \left\{ (1 - \beta_{i}) (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{E}_{i}^{(\text{ext})} + i \, \boldsymbol{\alpha}_{i} \cdot \boldsymbol{B}_{i}^{(\text{ext})}) + 2 \, \boldsymbol{\alpha}_{i} \cdot \boldsymbol{A}_{i}^{(\text{ext})} \times \boldsymbol{p}_{i} \right\}$$

$$\hat{\mathcal{O}}_{e}^{(\text{int})} = d_{e} \sum_{i=1}^{Z} \left\{ (1 - \beta_{i}) (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{E}_{i}^{(\text{int})} + i \, \boldsymbol{\alpha}_{i} \cdot \boldsymbol{B}_{i}^{(\text{int})}) + 2 \, \boldsymbol{\alpha}_{i} \cdot \boldsymbol{A}_{i}^{(\text{int})} \times \boldsymbol{p}_{i} \right\}$$

- The advantage of the former: purely one-body, when the Breit interaction is ignored.
- The advantage of the latter: (1 β) is manifestly of order O(α²) as it connects only two small components.

Finite-Size Effects of Nucleus

The residual interactions are

$$\begin{split} \hat{\mathcal{O}}_{nuc}^{(ext)} &= \frac{\alpha}{Z} \sum_{i=1}^{Z} \left[\boldsymbol{d}_{nuc} \cdot \boldsymbol{\nabla}_{i} , \, \boldsymbol{\alpha}_{i} \cdot \boldsymbol{A}_{i}^{(ext)} \right] + \left[\boldsymbol{\alpha}_{i} \cdot \boldsymbol{\nabla}_{i} , \, \boldsymbol{d}_{nuc} \cdot \boldsymbol{A}_{i}^{(ext)} \right] \\ \hat{\mathcal{O}}_{nuc}^{(int, el)} &= -\frac{4 \pi \, \alpha}{Z \, x^{2}} \left\{ Z \, Y_{1}(\hat{x}) \otimes \frac{1}{3} \, \mathcal{C}_{1}(\boldsymbol{x}) \right. \\ &+ Y_{1}(\hat{x}) \odot \frac{1}{\sqrt{3}} \left[\boldsymbol{d}_{nuc} \otimes \left(\mathcal{C}_{0>}(\boldsymbol{x}) - \frac{\sqrt{2}}{x^{2}} \, \mathcal{C}_{2<}(\boldsymbol{x}) \right) \right]_{1}^{sym} \\ &- \left(Y_{0}(\hat{x}) \otimes \left[\boldsymbol{d}_{nuc} , \, \mathcal{C}_{0}(\boldsymbol{x}) \right] + Y_{2}(\hat{x}) \otimes \left[\boldsymbol{d}_{nuc} , \frac{1}{5 \, x^{2}} (\mathcal{C}_{2} + \mathcal{C}_{2}(\boldsymbol{x})) \right] \right) \cdot (\boldsymbol{x} \, \boldsymbol{\nabla}^{sym}) \right\} \end{split}$$

- $\hat{\mathcal{O}}_{nuc}^{(int,el)}$ is the most general form of the Schiff moment interaction.
- The 1st line is the local nuclear EDM (C_1) interaction.
- The 2nd and 3rd line comes from [*d*_{nuc} · ∇_x , *C_J F*(x)]; the former involves [∇_x , *F*(x)] and the second involves [*d*_{nuc} , *C_J*].
- To order of O(v/c) and $O(\tilde{G}_F)$, the 3rd line vanishes.

Schiff Operator: For Atomic *s*–*p* Transitions

To get a more compact form of the Schiff operator and compare with literature, consider the following case of atomic s-p transitions (Flambaum & Ginges, 02).

Expand the atomic radial wave functions (short-distance) in polynomials

$$u_{\mathfrak{s}}(x) = \sum_{k \ge 0} a_k x^k \qquad u_{p}(x) = \sum_{k \ge 1} b_k x^k$$

Recast the matrix element

$$\langle \Psi_{\rho} | \, \hat{\mathcal{O}}_{\rm nuc}^{\rm (int,el)} \, | \Psi_{s} \rangle \equiv -4\pi \alpha \, \langle \Psi_{\rho} | \, \hat{\mathsf{S}}_{L} \odot \boldsymbol{\nabla} \, \delta^{(3)}(\boldsymbol{x}) \, | \Psi_{s} \rangle$$

We get

$$\begin{split} \hat{S}_{L} &= \int d\mathbf{y} \, \hat{\rho}(\mathbf{y}) \, \sum_{k \geq 1} \, \frac{c_{k}}{c_{1}} \, \frac{\mathbf{y}^{k+1}}{(k+1) \, (k+4)} \Biggl\{ \mathbf{y} \\ &- \frac{(k+4)}{3 \, Z} \left(\mathbf{d}_{\text{nuc}} - \frac{2(k+1) \sqrt{2 \, \pi}}{(k+4)} [\mathbf{d}_{\text{nuc}} \otimes \, \mathbf{Y}_{2}(\hat{\mathbf{y}})]_{1}^{\text{sym}} \right) \Biggr\} \end{split}$$

• Typical finite-size suppression factor $\langle y^2 \rangle / \langle x^2 \rangle \sim \text{fm}^2 / a_0^2 \sim 10^{-9}$.

Schiff Moment: An Approximation

To the leading order k = 1

$$\langle \hat{\boldsymbol{S}}_L \rangle \approx \frac{1}{10} \left\{ \langle y^2 \boldsymbol{y} \rangle - \frac{5}{3Z} \left(\langle \boldsymbol{d}_{\text{nuc}} \otimes y^2 \rangle - \frac{4\sqrt{2\pi}}{5} \langle \boldsymbol{d}_{\text{nuc}} \otimes y^2 Y_2(\hat{\boldsymbol{y}})]_1 \rangle \right) \right\}$$

Compared with the conventional form

$$\langle \hat{\mathbf{S}} \rangle \approx \frac{1}{10} \left\{ \langle y^2 y \rangle - \frac{5}{3Z} \langle \boldsymbol{d}_{\text{nuc}} \rangle \otimes \langle y^2 \rangle \right\}$$

two major differences are

The quadrupole term:

Vanish if assuming a spherical charge density (not too different).

- Solution (dnuc ⊗ y²) vs. (dnuc) ⊗ (y²): These are not equal in general since ∑_n |ψ_n⟩ ⟨ψ_n| ≠ |ψ₀⟩ ⟨ψ₀| is needed for the former evaluation (dramatically different!).
 - For deuteron, \hat{S}_L is purely one-body (c.m. factored out): Three terms contribute as 1 : -5/3 : -4/3 (non-fac.) vs. 1 : -0.59 : -0.071 (fac.).
 - How about other nuclei?

うるつ

What a Difference?!

Schiff theorem is a quantum-mechanical description of the screening dynamics, so the essential commutation relation

 $[\boldsymbol{d}_{\mathrm{nuc}}\cdot\boldsymbol{\nabla}_{x}\,,\,\boldsymbol{C}_{J}\,\boldsymbol{F}(x)]$

has to be realized on a operator level. Hence d_{nuc} should be taken as a q-number.

- d_{nuc} and C_J form a composite operator.
- Besides $[\nabla_x, F(x)]$, one also has $[\mathbf{d}_{nuc}, C_J]$.
- Traditionally, *d*_{nuc} is taken as a *c*-number when deriving the Schiff theorem (not by Schiff himself), which naturally leads to

$$\langle \boldsymbol{d}_{\mathrm{nuc}} \otimes \boldsymbol{C}_J \rangle = \langle \boldsymbol{d}_{\mathrm{nuc}} \rangle \otimes \langle \boldsymbol{C}_J \rangle \quad [\boldsymbol{d}_{\mathrm{nuc}} \,, \, \boldsymbol{C}_J] = 0 \,.$$

• Traditional logic, but done it right: treating nucleus as an elementary particle (no internal excitation, frozen dynamics upon shielding), i.e. $d_{nuc} = \langle d_{nuc} \rangle \hat{l}$ and $C_J = \langle C_J \rangle \hat{l}_J$

 $\langle \hat{I} \otimes \hat{I}_J \rangle = \langle \hat{I} \rangle \otimes \langle \hat{I}_J \rangle \quad [\hat{I} \ , \ \hat{I}_{J=\text{even}}] = 0 \ .$

How does the nucleus appear to electrons upon shielding?

Electron-Nucleus Magnetic Interaction

The residual interactions are

$$\begin{split} \hat{\mathcal{O}}_{nuc}^{(\text{int, mag})} &= -\frac{4\pi\alpha}{Z\,x^3} \Biggl\{ Z\left[Y_2(\hat{x})\otimes\alpha\right]_2\odot\frac{1}{5}\left(M_2 + \mathcal{M}_2(x)\right) \\ &-\left[Y_2(\hat{x})\otimes\alpha\right]_2\odot\left[d_{nuc}\otimes\left(\sqrt{\frac{3}{10}}\left(M_1 + \mathcal{M}_{1>}(x)\right) + \sqrt{\frac{8}{15}}\,\mathcal{M}_{1<}(x)\right)\right]_2^{\text{sym}} \\ &+\left[Y_1(\hat{x})\otimes\alpha\right]_1\odot\left[d_{nuc}\,,\frac{1}{3}\left(M_1 + \mathcal{M}_1(x)\right)\right]\cdot\left(x\,\boldsymbol{\nabla}^{\text{sym}}\right)\Biggr\} \end{split}$$

- The 1st line is the magnetic quadrupole *M*₂.
- The 2nd and 3rd line comes from [*d*_{nuc} · ∇_x , *M_J F*(x)]; the former involves [∇_x , *F*(x)] and the second involve [*d*_{nuc} , *M_J*].²
- Discarding the local moments \mathcal{M}_J 's, there are still long-range interactions which are not screened as in the electrostatic case.
- The suppression factor is of hyperfine splitting, on the order of $\alpha^2 m_e/m_N \sim 10^{-7}$. Thus, this would not be less important than the electrostatic case if M_2 is available.

²Schiff had the 3rd line for H(l = 1/2). If **d**_{nuc} were a *c*-number, he would not have gotten this term.

In conclusion:

 The Schiff theorem is derived at the operator level in the most general fashion. The Schiff operator we got is different from existing literature. For a deuteron, the difference is huge, and check on nuclei of great interests like Hg, Xe, Ra ...etc. should be carried out.

Thank You!