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Permanent EDM of an atom: violates symmetry under P, T, CP
-

 

P violation : Bi, Cs, Tl, …
-

 

CP violation : K (1964), B (2001).
Atomic EDM search 

-

 

first evidence of CP violation in eV-level experiments
-

 

table-top test for theories beyond standard model

Published upper limits for diamagnetic atoms

Atom Year 95% upper bound 
[e⋅cm]

Ref.

129Xe 1984 2.3E-26 Vold, Raab, Heckel, Fortson, PRL 52, 2229

2001 6.6E-27 Rosenberry, Chupp, PRL 86, 22

199Hg 1987 3.4E-26 Lamoreaux

 

et al., PRL 59, 2275

1993 1.3E-27 Jacobs et al., PRL 71, 3782

1995 8.7E-28 Jacobs et al. PRA 52, 3521

2001 2.1E-28 Romalis, Griffith, Jacobs, Fortson, PRL 86, 2505

Rn, Ra ?



EDM search by precession frequency measurement
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Motivation for LXe
 

: 
• Spin-polarized atomic liquid

−

 

Particle density  n ~ 1022 cm-3 (×108

 

rel. to 199Hg)
−

 

Dielectric strength Emax

 

~ 400 kV/cm (×50 rel. to 199Hg)
• Greatly improved statistical sensitivity 

E

S=1/2
d

EDM search in condensed phase : 
•

 

Alignment of dipoles (solid state garnet,

 

B. J. Heidenreich

 

et al.

 

PRL 2005, also C-Y Liu, 
Indiana Univ.) 

–
 

Transverse coherence not required.
–

 

Strong spin-spin interaction in solid phase is ok. (even desired)
• Precession measurement with liquid

–
 

Motional average helps, but long range dipolar interaction survives.
How much effect on the coherence time & statistical sensitivity?
How much systematic effects will be introduced?
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Dipolar interaction
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Negative feedback : 
spectral narrowing
(clustering)

Positive feedback : 
dynamic instability

α

 

= 35 deg*

B = H+4πM
= Hext

 

+Hpole

 

+4πM/3+8πMδ(r)/3 

−4πM/3 for sphere
zero for non-overlapping particles

α
Hext

 

= Bz

 

z, (homogeneous)

ωliquid

 

= ωfree

• Spherical cell, uniform magnetization

• External field gradient, non-uniform magnetization, non-spherical cell 
→ nonlinear evolution

* Ledbetter and Romalis, PRL 2002,
Ledbetter et al. J. Chem. Phys. 2004,
also, Jeener, PRL 1999 



Evolution of transverse magnetization in the rotating frame

free spins,
under gradient
ΔBz

 

= g Δz

coupled spins,
α

 

< 35 deg

coupled spins,
α

 

> 35 deg

dephase

 

at a steady rate
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= γ ΔB/2π
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SQUID detection of Xe
 

precession

•

 

129Xe polarization by spin exchange with optically pumped 
Rb
−

 

1 cm3(liquid)/20 min,  P = 2 ~ 5 %
• Five layer mu-metal shield (shielding factor 106)
•

 

Detection of precession by a pair of high Tc

 

SQUIDs

 
(Tristan Technologies)  
− δB ~ 30 fT/Hz1/2,  fXe

 

~ 10 Hz
−

 

cell-SQUID separation : 1.5 cm (center-to-center)
-

 

Phase difference Δφ

 

in the precession signal picked up by 
two SQUIDs phase gradient

spherical glass cell
1 cm diameter

N2

 

gas, 160 K

77 K



Ledbetter and Romalis, PRL (2002).

Tip angle = 3.5 deg Tip angle = 90 deg

Ledbetter, Savukov, Romalis, PRL (2005)

Typical linear 
evolution
Δφ = γBt

Non-linear evolution
Δφ = γB sinh(β t)/β

π/2 tipping pulse π/2 restoring pulse

• T2
*

 

of  >1000 sec obtained without shimming.



Implication for EDM search
Small tip-angle regime 

Precession insensitive

 

to field gradient
Use uniform E field 

−

 

long coherence time : high SNR
−

 

need to monitor B field drift (co-magnetometer)

Large tip-angle regime 
Exponentially sensitive

 

to field gradient
Use E field gradient

−

 

amplification of phase gradient signal by xenon
−

 

need to control ∇B, ∇M

∇T, v(r),..

Spatially resolved study :
optical detection of nuclear spin polarization

First generation
EDM experiment



Optical detection of nuclear spin polarization in LXe
Nuclear Spin-induced Optical Rotation (NSOR)

B = Hext

 

+Hpole

 

(M)+4πM/3+8πκ M/3 
• Magnetic field seen by an electron in a nuclear spin-polarized liquid

M : nuclear magnetization

• Faraday rotation enhanced by hyperfine interaction
laser (λ) excited states of electron nuclear spin

dist. dipolar field contact field,
κ = 1 (classical) nucleus κ

1H (water) ~1*
13C 4.2§

33S 15§

129Xe 135*
z
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• Rotation of linear polarization

N : number density

 

n : refractive index
: hyperfine constant

 

l : path length
ω

 

: frequency of laser
ka

(= 0)

* measured
§

 

calculated
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Pulse Sequence

Xe

 

collection FID Optical rotation
detection

×n
t

Spin-lock
by AFP

7°

 

tipping
pulse≈

Setup

LXe

 

in a square cell, 180 K
λ

 

= 532, 770, 1064 nm

...



Optically detected 129Xe polarization decay 

λ=770 nm

Clear linear relationship 
between optical rotation and 
SQUID-detected 129Xe 
polarization

•

 

Decay due to T1

 

and 
small angle tipping pulses

Savukov, Lee, Romalis, Nature 2006



Wavelength dependence of optical rotation in liquid 129Xe

* Romero & Vaara, Chem. Phys. Lett. (2004)

Measured rotation normalized to 
100 % polarization of 129Xe 
(natural abundance)

Predictions from ab initio 
calculation*

Classical Faraday rotation expected 
from Verdet

 

constant measurement 
(Ingersoll

 

et al, J. Opt. Soc. Am. 1956)

 

in 
gaseous xenon
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e.g. Properties of LXe

 

@ 178 nm

nLXe

 

(λ)
n-matched transparent container

PD array

Future experiment with NSOR

B

• High resolution NMR imaging of LXe

 

without B-gradient

laser

• Sensitivity enhancement

-

 

study of conditions leading to instability
-

 

directly monitor higher order gradients in M

- current shot-noise-limited SNR ~ 100/s-1/2

- UV laser
- cavity/multipass

 

arrangement

M(r)

refractive index 1.7
Rayleigh

 

scattering 
length

29 cm

absorption length > 100 cmreplace SQUID for EDM signal detection ?



LXe EDM Experiment : main features

• Small tip-angle (negative feedback) regime
• Low transition-temperature (Tc

 

) SQUID detection
• SQUID “co-magnetometer”
• Superconducting shield and B field coil

−

 

pushing the limit of NMR frequency and B-field measurement with a SQUID
−

 

sensitivity goal : 1 σd < 10−29 [e · cm] ( ×10 better than 199Hg ) in one day

E = 20 kV/cm E = 80 kV/cm

σ(f) = 0.1 nHz
σ(B) = 0.008 fT
(2.4 fT/Hz1/2)

σ(f) = 0.4 nHz
σ(B) = 0.03 fT
(9 fT/Hz1/2)

equivalents :



Setup Overview

Evacuated 
cryogenic 
insert
and 
SQUID 
sensors

sapphire 
cellLHe

 

dewar,
Nb

 

shield 
and coil

x3



LHe
 

cryostat
-

 

LN-shielded dewar

 

(unloaded boil-off 
6L/day )
-

 

made of aluminum 6061 (outer and LN2 
vessel) and 316 stainless steel (LHe

 

vessel)
-

 

demountable bottom flanges for bottom load 
of large diameter coils and superconducting 
shield
- Six optical windows made of quartz glass
-

 

HV cable in the vacuum space thermally 
anchored to the LN2 jacket.

Mu-metal shield 
-

 

to shield earth's field when superconducting 
components are cooled down.

LN2

LHe

316SS

Al

indium 
seal

Nb
coil

mu-metal≈



Noise from.. temperature w/o shield 
[fT/Hz1/2]

w/ shield  
[fT/Hz1/2]

HV pin (s.s.1010) 4 K 4.0x10-2 1.5x10-4

LHe

 

vessel (s.s. 316) 4 K 9.0x10-1 8.4x10-6

Thermal shield & 
LN2 jacket 

~80K 1.8x101 1.9x10-5

Outer vessel 293 K 4.7x101 4.7x10-5

Mu-metal 293 K 3.3x100 1.7x10-6

Calculated Johnson noise from structural components
- numerical calculation with actual dimension 
- based on electromagnetic power loss and fluctuation-dissipation theorem

Negligible with Nb shield



Superconducting

 

Nb

 

shield

 

: 
-

 

Six orders of magnitude reduction of 
environmental field fluctuation, but strongly 
(dia)magnetic
-A special aspect ratio was chosen where the 
image field (B’) of Nb

 

in response to precessing

 
xenon is always parallel to the xenon itself.

B0

 

field coil

 

: 
-

 

Superconducting (Nb-Ti) wire, modified 
Helmholtz

 

pair  
-

 

Homogeneity 1:105

-

 

Back-reaction to the dipole suppressed by 
a large (adjustable) inductor L1

 

,  
Lcoil

 

= LHelm

 

+ L1

 

>> LHelm

B0M

B’

aspect ratio (dia/height)

1.19 2.52

Δf
[H

z]

Δf < 0

B0M

B’
Δf > 0

B0M

B’
Δf = 0

12’’

14.3’’

L1

B’ : back reaction field
M : dipole moment
b : coil-dipole coupling

B’ = M b2/Lcoil

M

B0



Evacuated LHe
 

insert
• SS-Pyrex-Quartz seal
• HV feedthroughs
•

 

Main function is to provide thermal insulation between 
liquid xenon and LHe.
•

 

Heat loss : radiation loss suppressed by reflective 
coating on the inner wall. (Johnson noise suppressed by 
coating in small ~ 1 mm patches)
•

 

Three sets of SQUID pickup coils configured to 
measure :
-

 

transverse field (Mx , for Xe

 

precession), 
- uniform longitudinal field (Bz

 

, “co-magnetometer”)
- 2nd

 

order gradient longitudinal field (Mz , Xe

 

polarization)
quartz

s.s

Pyrex
transition

−HV

+HV

x

z

y
SQUIDs



SQUID arrangement

Internal feedback
Ip,int

 

= B Asens

 

/ (Lpick

 

+ Linput

 

)
External feedback
Ip

 

≈

 

Ip,int

 

/ (flux loop gain)

Josephson junction array (on chip or on a separate chip)

External feedback (Nb

 

wire)

Internal feedback (Nb

 

wire)

Lpick

dipole Ip
Asens

RC filter

A SQUID Magnetometer
•

 

Detects flux at a level of μΦ0

 

( Φ0

 

= 2.07 fTm2) based 
on flux quantization and Josephson effect
•

 

Made in small size (< 1mm); increased field sensitivity 
by coupling to  ~cm size pick-up coil
•

 

filter (frequency : RC,  amplitude : junction array) in the 
pickup circuit
•

 

Nonlinear Φ-V response feedback to lock the flux 
and read out the feedback voltage.
-internal (SQUID flux) and external (pickup coil flux) 
feedback modes



SQUID sensitive to: Mx Bz Mz

Pickup coil 
geometry

saddle coil 3−1−1+3 
circular loops

1−2+1 circular 
loops

Asens 1620 mm2 1960 mm2 980 mm2

Lpickup 0.48 μH 1.6 μH 0.47 μH

Aeff for inductance 
matched SQUID

17 mm2 11 mm2 10 mm2

δBsens

 

for δΦ

 

=
2 μΦ0

 

/Hz1/2

0.24 fT/Hz1/2 0.38 fT/Hz1/2 0.42 fT/Hz1/2

x2

SQUID parameters

Asens

Asens

Asens
dia. = 1 in.



Sapphire cavity as a LXe cell
Advantages of sapphire (Al2

 

O3

 

)
• High thermal conductivity: κ

 

= 70 Wm-1K-1

 

@ 150 K 
• High dielectric strength : 480 kV/cm @ R.T.
• Electrical resistivity

 

is large at low temperature.

298K 873K 1273K

1016 1011 106 Ωcm
+HV (50 kV)

18 mm

machined 
hemisphere
(φ 10 mm)

conductive coating

18
 m

m

access tube

E field calculation

−HV

Ecenter

 

≈

 

75 kV/cm
ΔE/E ≈

 

5%

cell

+50kV

−50kV

160 K

•

 

Field amplification inside a 
dielectric cavity 

E/E0

 

= 3/(ε-1+2) ≈

 

1.4
ε( sapphire, ||) = 10

c-axis sapphire

Ez

z

z

10mm

>1017
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Sensitivity estimate

T

TE

129Xe 
precession

E -

 

field

Measure-
ments

+HV

−HV

f1 f2

→

 

For one-day average,   
σd = 3 ×

 

10-30

 

e cm

B1 B2

x

 

n

polarize/collect α

2

21

2

1
2 )(

2
)(2

4
)( ⎟

⎠
⎞

⎜
⎝
⎛ −⋅+⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅= BB

E
f

E
hd Xe

Xe σμσσ

TTsperSNR
f

E

1
)__(

1)( ∝σ

T
TfBB E

corner )()( δσ ∝

SNR = 2 ×

 

106 / s1/2

(natural abundance xenon, 5 % 
polarization, α

 

= 2 deg),
δB = 0.5 fT/Hz1/2 at fcorner

 

= 1 Hz ,
TE

 

= 20 s ,
E = 75 kV/cm

(1/f noise dominated)



False positives

Δf

 

∝

 

E

Δf

 

∝

 

E2

• vxE
-

 

low temperature, condensed sample
-

 

convection suppressed by positive (upward) temperature gradient
• leakage current
-

 

monitored by Bz

 

and Mz

 

SQUIDs

 

(analogous to 4-cell Hg experiment)
-

 

Additional SQUID for current measurement in the conduction path

 

possible.
-

 

no gas, cell surface in vacuum, high purity cell construction
• charging current, magnetized impurity

-

 

electrostriction of sapphire cell deformation
δx/x

 

~ 0.3 ppm

 

(r.t),

 

significant for E reversal asymmetry ~0.1 %

-

 

non-linear dielectric effect (density change by E) of LXe
δn/n

 

< 8 ppm, suppressed by plugged cell

-

 

cell motion, in the image field and gradient field 

δ(Δf)/d(E2) can be directly measured.



Conclusion

•

 

Developed theoretical/numerical/experimental tools to study magnetization 
evolution of hyperpolarized liquid xenon under the effect of strong dipolar 
interaction 

•

 

Analysis for seamless integration of superconducting components

 

(minimize 
back-reaction)

•

 

Experimental design to take advantage of high statistical sensitivity provided by 
LXe

•

 

Physical construction of the setup will start upon receipt of the cryostat (Janis 
Research) and Nb

 

SQUIDs

 

(ez

 

SQUID, Germany).

→ First competitive atomic EDM measurement from condensed-phase sample is 
expected. 
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