Search for an atomic EDM in hyperpolarized liquid ¹²⁹Xe

Seung-Kyun Lee

Department of Physics, Princeton University

Thanks to : Michael Romalis, Micah Ledbetter, Igor Savukov

Supported by DOE, NSF

3/20/2007 EDM Workshop, Institute for Nuclear Theory, Seattle, WA Permanent EDM of an atom: violates symmetry under P, T, CP

- P violation : Bi, Cs, Tl, ...
- CP violation : *K* (1964), *B* (2001).

Atomic EDM search

- first evidence of CP violation in eV-level experiments
- table-top test for theories beyond standard model

Published upper limits for diamagnetic atoms

Atom	Year	95% upper bound [e⋅cm]	Ref.
¹²⁹ Xe	1984	2.3E-26	Vold, Raab, Heckel, Fortson, PRL 52, 2229
	2001	6.6E-27	Rosenberry, Chupp, PRL 86, 22
¹⁹⁹ Hg	1987	3.4E-26	Lamoreaux et al., PRL 59, 2275
	1993	1.3E-27	Jacobs et al., PRL 71, 3782
	1995	8.7E-28	Jacobs et al. PRA 52, 3521
	2001	2.1E-28	Romalis, Griffith, Jacobs, Fortson, PRL 86, 2505
Rn, Ra	?		

EDM search by precession frequency measurement

$$\omega_{\pm E} = \pm 2 d E / \hbar$$

$$\delta \omega \sim (1/T_2) (1/\text{SNR})$$

– Particle density $n \sim 10^{22} \text{ cm}^{-3}$ (×10⁸ rel. to ¹⁹⁹Hg)

- Dielectric strength E_{max} ~ 400 kV/cm (×50 rel. to ¹⁹⁹Hg)
- Greatly improved statistical sensitivity

EDM search in condensed phase :

• Alignment of dipoles (solid state garnet, B. J. Heidenreich et al. PRL 2005, *also* C-Y Liu, Indiana Univ.)

- Transverse coherence not required.

- Strong spin-spin interaction in solid phase is ok. (even desired)

• Precession measurement with liquid

- Motional average helps, but long range dipolar interaction survives.

S = 1/2

✓How much effect on the coherence time & statistical sensitivity?

✓How much systematic effects will be introduced?

Dipolar interaction

• Spherical cell, uniform magnetization

- $\mathbf{H}_{ext} = \mathbf{B}_{z}\mathbf{z}, \text{(homogeneous)}$
- External field gradient, non-uniform magnetization, non-spherical cell → nonlinear evolution

* Ledbetter and Romalis, PRL 2002, Ledbetter et al. J. Chem. Phys. 2004, *also*, Jeener, PRL 1999 Evolution of transverse magnetization in the rotating frame

7.4

Z4

7.4

free spins, under gradient $\Delta B_z = g \Delta z$

dephase at a steady rate $\Delta f = \gamma \Delta B/2\pi$

coupled spins, $\alpha < 35 \text{ deg}$

oscillating phase gradient

$$\omega = \frac{4\sqrt{2}\pi}{15} M_0 \gamma (3\cos 2\alpha - 1)^{1/2}$$

dynamic instability

SQUID detection of Xe precession

 ¹²⁹Xe polarization by spin exchange with optically pumped Rb

- $-1 \text{ cm}^{3}(\text{liquid})/20 \text{ min}, P = 2 \sim 5 \%$
- Five layer mu-metal shield (shielding factor 10⁶)
- Detection of precession by a pair of high T_c SQUIDs (Tristan Technologies)

 $-\delta B \sim 30 \text{ fT/Hz}^{1/2}, f_{\text{Xe}} \sim 10 \text{ Hz}$

- cell-SQUID separation : 1.5 cm (center-to-center)

- Phase difference $\Delta \phi$ in the precession signal picked up by two SQUIDs \rightarrow phase gradient

Tip angle = 3.5 deg

Tip angle = 90 deg

• T_2^* of >1000 sec obtained without shimming.

Ledbetter and Romalis, PRL (2002).

Ledbetter, Savukov, Romalis, PRL (2005)

Implication for EDM search Small tip-angle regime Precession insensitive to field gradient \rightarrow Use uniform E field – long coherence time : high SNR need to monitor B field drift (co-magnetometer) First generation EDM experiment Large tip-angle regime Exponentially sensitive to field gradient \rightarrow Use E field gradient - amplification of phase gradient signal by xenon – need to control ∇B , ∇M $\nabla T, v(r), \dots$ Spatially resolved study : optical detection of nuclear spin polarization

Optical detection of nuclear spin polarization in LXe

Nuclear Spin-induced Optical Rotation (NSOR)

• Faraday rotation enhanced by hyperfine interaction

laser (λ) \longleftrightarrow excited states of electron \longleftrightarrow nuclear spin

• Magnetic field seen by an electron in a nuclear spin-polarized liquid

• Rotation of linear polarization

$$\theta_{Faraday} = V(\omega) \cdot l \cdot B$$

$$\theta_{NSOR} = -\frac{4\pi l N r_e c}{n\hbar} \sum_{k} \frac{f_k a_k \omega^2}{(\omega_k^2 - \omega^2)^2} \langle I_z \rangle$$

N: number density

a_k: hyperfine constant

w: frequency of laser

n: refractive index

l: path length

nucleus	к
¹ H (water)	~1*
¹³ C	4.2§
³³ S	15§
¹²⁹ Xe	135*

M : nuclear magnetization

* measured § calculated

Pulse Sequence

Optically detected ¹²⁹Xe polarization decay

• Decay due to T_1 and small angle tipping pulses

Clear linear relationship between optical rotation and SQUID-detected ¹²⁹Xe polarization

Wavelength dependence of optical rotation in liquid ¹²⁹Xe

Future experiment with NSOR

- High resolution NMR imaging of LXe without B-gradient
- study of conditions leading to instability
- directly monitor higher order gradients in M

- Sensitivity enhancement
- current shot-noise-limited SNR $\sim 100/s^{\text{-}1/2}$
- UV laser
- cavity/multipass arrangement

 \rightarrow replace SQUID for EDM signal detection ?

e.g. Properties of LXe @ 178 nm

refractive index	1.7
Rayleigh scattering length	29 cm
absorption length	> 100 cm

LXe EDM Experiment : main features

- Small tip-angle (negative feedback) regime
- Low transition-temperature (T_c) SQUID detection
- SQUID "co-magnetometer"
- Superconducting shield and B field coil

– pushing the limit of NMR frequency and B-field measurement with a SQUID – sensitivity goal : $1 \sigma_d < 10^{-29} [e \cdot cm]$ (×10 better than ¹⁹⁹Hg) in one day

\rightarrow	equivalents :	E = 20 kV/cm	E = 80 kV/cm
		$\sigma(f) = 0.1 \text{ nHz}$	$\sigma(f) = 0.4 \text{ nHz}$
		$\sigma(B) = 0.008 \text{ fT}$	$\sigma(B) = 0.03 \text{ fT}$
		$(2.4 \text{ fT/Hz}^{1/2})$	$(9 \text{ fT/Hz}^{1/2})$

LHe cryostat

- LN-shielded dewar (unloaded boil-off 6L/day)

made of aluminum 6061 (outer and LN2 vessel) and 316 stainless steel (LHe vessel)
demountable bottom flanges for bottom load of large diameter coils and superconducting shield

Six optical windows made of quartz glass
HV cable in the vacuum space thermally anchored to the LN2 jacket.

Mu-metal shield

- to shield earth's field when superconducting components are cooled down.

Calculated Johnson noise from structural components

- numerical calculation with actual dimension
- based on electromagnetic power loss and fluctuation-dissipation theorem

Noise from.	temperature	w/o shield [fT/Hz ^{1/2}]	w/ shield [fT/Hz ^{1/2}]
HV pin (s.s.1010)	4 K	4.0×10^{-2}	1.5x10 ⁻⁴
LHe vessel (s.s. 316)	4 K	9.0x10 ⁻¹	8.4x10 ⁻⁶
Thermal shield & LN2 jacket	~80K	1.8x10 ¹	1.9x10 ⁻⁵
Outer vessel	293 K	4.7×10^{1}	4.7x10 ⁻⁵
Mu-metal	293 K	3.3×10^{0}	1.7x10 ⁻⁶

 \rightarrow Negligible with Nb shield

B₀ field coil :

- Superconducting (Nb-Ti) wire, modified Helmholtz pair

- Homogeneity 1:10⁵

- Back-reaction to the dipole suppressed by a large (adjustable) inductor L_1 ,

 $L_{coil} = L_{Helm} + L_1 >> L_{Helm}$

 $B' = M b^2 / L_{coil}$ B' : back reaction field M : dipole moment b : coil-dipole coupling Superconducting Nb shield :

- Six orders of magnitude reduction of environmental field fluctuation, but strongly (dia)magnetic

-A special aspect ratio was chosen where the image field (**B**') of Nb in response to precessing xenon is always parallel to the xenon itself.

Evacuated LHe insert

- SS-Pyrex-Quartz seal
- HV feedthroughs
- Main function is to provide thermal insulation between liquid xenon and LHe.
- Heat loss : radiation loss suppressed by reflective coating on the inner wall. (Johnson noise suppressed by coating in small ~ 1 mm patches)
- Three sets of SQUID pickup coils configured to measure :
- transverse field (M_x , for Xe precession),
- uniform longitudinal field (B_z , "co-magnetometer")
- 2^{nd} order gradient longitudinal field (M_z, Xe polarization)

SQUID arrangement

A SQUID Magnetometer

Internal feedback $I_{p,int} = B A_{sens} / (L_{pick} + L_{input})$ External feedback $I_p \approx I_{p,int} / (flux loop gain)$

dia. = 1 in. A	sens x2	A _{sen}	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} $
SQUID sensitive to:	M _x	B _z	M _z
Pickup coil geometry	saddle coil	3–1–1+3 circular loops	1–2+1 circular loops
A _{sens}	1620 mm ²	1960 mm ²	980 mm ²
L _{pickup}	0.48 µH	1.6 µH	0.47 μH
A _{eff} for inductance matched SQUID	17 mm ²	11 mm ²	10 mm ²
δB_{sens} for $\delta \Phi =$ 2 $\mu \Phi_0 / Hz^{1/2}$	0.24 fT/Hz ^{1/2}	0.38 fT/Hz ^{1/2}	$0.42 \text{ fT/Hz}^{1/2}$

Sapphire cavity as a LXe cell

access tube c-axis sapphire conductive coating +HV (50 kV)machined hemisphere $(\phi \ 10 \text{ mm})$ -HV

• Field amplification inside a dielectric cavity

 $E/E_0 = 3/(\varepsilon^{-1}+2) \approx 1.4$ ε (sapphire, ||) = 10

Advantages of sapphire (Al₂O₃)

- High thermal conductivity: $\kappa = 70 \text{ Wm}^{-1}\text{K}^{-1}$ @ 150 K
- High dielectric strength : 480 kV/cm @ R.T.
- Electrical resistivity is large at low temperature.

E field calculation

SNR = $2 \times 10^6 / s^{1/2}$ (natural abundance xenon, 5 % polarization, $\alpha = 2$ deg), $\delta B = 0.5$ fT/Hz^{1/2} at $f_{corner} = 1$ Hz , $T_E = 20$ s , E = 75 kV/cm

→ For one-day average, $\sigma_d = 3 \times 10^{-30}$ e cm

False positives

 $\Delta f \propto E$

- vxE
- low temperature, condensed sample
- convection \rightarrow suppressed by positive (upward) temperature gradient
- leakage current
- monitored by Bz and Mz SQUIDs (analogous to 4-cell Hg experiment)
- Additional SQUID for current measurement in the conduction path possible.
- no gas, cell surface in vacuum, high purity cell construction
- charging current, magnetized impurity

```
\Delta f \propto E^2
```

- electrostriction of sapphire \rightarrow cell deformation $\delta x/x \sim 0.3$ ppm (r.t), significant for E reversal asymmetry ~0.1 %

- non-linear dielectric effect (density change by E) of LXe $\delta n/n < 8$ ppm, suppressed by plugged cell

- cell motion, in the image field and gradient field

→ $\delta(\Delta f)/d(E^2)$ can be directly measured.

Conclusion

• Developed theoretical/numerical/experimental tools to study magnetization evolution of hyperpolarized liquid xenon under the effect of strong dipolar interaction

- Analysis for seamless integration of superconducting components (minimize back-reaction)
- Experimental design to take advantage of high statistical sensitivity provided by LXe
- Physical construction of the setup will start upon receipt of the cryostat (Janis Research) and Nb SQUIDs (ez SQUID, Germany).

 \rightarrow First competitive atomic EDM measurement from condensed-phase sample is expected.