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Introduction

Wheeler’s paradox. Entropy of black hole. Bekenstein.
Then temperature of black hole. Radiation! Gribov, Hawking.
Propagation of semiclassical wave packet from horizon vicinity.
Independently of its initial spectral content, at infinity it is
|f(ω)|2 ∼ exp(−8πkMω). Boltzmann distribution with

T = (8πkM)−1

Now, with dE(= dM) = TdS = (8πkM)−1dS,
we obtain S = 4πkM2. Since the horizon area is
A = 4πr2

g = 16πk2M2,

S = A/4l2p; l2p = k. Hawking.



The area of a black hole horizon behaves as an adiabatic invariant
(Christodoulu, Ruffini, Bekenstein).
Quantization of horizon area
Bekenstein, later Mukhanov, Kogan (strings).

Simple-minded arguments: A = 8πγl2pN ; l2p = ~k/c3,

N generalized quantum number (the same power as ~).

No sound arguments in favor of integer N, or equidistant spectrum!

A = 8πγl2p
∑

jm a(j)νjm

S = A/4l2p = 2πγ
∑

jm a(j)νjm = 2πγ
∑

j a(j)νj



Holographic bound

(Bekenstein, ’t Hooft, Susskind)
Entropy S of any spherical nonrotating body confined
inside a sphere of area A is bounded as follows:
S ≤ A/4l2p ,
with the equality attained only for a body that is a black hole.
To prove it, let this body collapse into a black hole. Then, we have
S ≤ Sbh = Abh/4l2p ≤ A/4l2p .
Quite unexpected,
but for common objects too mild to contradict the common experience.
Alternative formulation:
Among the spherical surfaces of a given area, it is
the surface of a black hole horizon that has the maximum entropy.



Number of quantum states

S = ln K ,
K is the total number of quantum states, which depends essentially
on the assumptions related to the distinguishability of the sites.

1 Complete distinguishability

K = ν! , ν =
∑

jm νjm =
∑

j νj .
S = ln ν! = ν ln ν reaches maximum for fixed A when all j correspond
to the smallest possible a(j) = amin. Then A ∼ ν and

S ∼ A ln A.

Wrong!



2 Complete indistinguishability

Number of states of given j is

K(j) = (νj + g(j) − 1)!/νj!(g(j) − 1)! ,

g(j) is the number of possible values of m for a given j.

S(j) = ln K(j) = g(j) ln j ,

under natural assumption νj À g(j).

A(j) ∼ a(j)νj À g(j) ln νj .

Wrong!



3 (and quite popular)

Total number of states is K =
∑

j g(j)νj.
It corresponds to the assumptions:
same j, different m −→ distinguishable,
different j, any m −→ indistinguishable,
same j, same m −→ indistinguishable.

Obviously, the first two of them, taken together, look
unnatural!

except the case when only a single value j is allowed.



The reasonable assumption

Only sites with the same jm are indistinguishable. Then

S = ln
[
ν!

∏
jm 1/ (νjm!)

]
.

But what is in common with

A ∼ N =
∑

jm a(j)νjm ?

We need maximum S for given N (“microcanonical” entropy), or
with logarithmic accuracy maximum of

ν ln ν − ∑
jm νjm ln νjm − µ

∑
jm a(j)νjm ,

where µ is a Lagrangian multiplier.



Variation in νjm gives (with logarithmic accuracy)

1. ln ν − ln νjm − µa(j) = 0, or

2. νjm = ν e−µa(j). Sum 2. over jm and divide by ν :
∑

jm e−µa(j) =
∑

j g(j) e−µa(j) = 1

(a secular equation for the Lagrange multiplier µ).

Multiply 1. by νjm and sum over jm :

Smax = µN = µ
8πγl2p

A. γ = µ/2π.

A = 8π γ l2p ν
∑

j e−µa(j) g(j) a(j).



Example

In Loop Quantum Gravity (LQG) a(j) =
√

j(j + 1); g(j) = 2j + 1.

The secular equation is
∑∞

j=1/2 (2j + 1) e−µ
√

j(j+1) = 1,

with the solution µ = 1.722,

and Barbero – Immirzi parameter of LQG γ = µ/(2π) = 0.274.

(Khriplovich, Korkin (2001); Ghosh, Mitra (2004); Corichi et al (2006))



Radiation spectrum of quantized black holes

If, due to quantum effects, the minimum change of the horizon area
under adiabatic process is (Bekenstein)

(∆A)min = ξl2p ,

then there are no “combinatorial” frequencies,
i.e., the radiation occurs when a site of given j disappears:

∆N = a(j), ωj = µTa(j).

Discrete spectrum! ωmin = µ T a(jmin).

Even finite number of lines: since νjm ≥ 1,
a(jmax) = ln ν/µ. ωmax = T ln(A/l2p).
However, anyway, exponential decrease.



Natural assumption: Γj ∼ νj = νg(j)e−ωj/T . Then
Ij ∼ ωjνj = νωjg(j)e−ωj/T

Exponential Wien profile for ωj À T (almost free)!

As distinct from the common thermal radiation, here the typical wave length
is roughly on the same order of magnitude as the radius of the black body.
Therefore, due to the centrifugal barrier, this radiation is strongly dominated
by the lowest possible partial wave, J=1 for photon.

Still, according to calculations by Page, the total intensity of γ radiation
is about the same as that given by the näıve Planck formula.



Using the Page profile as the envelope for the discrete spectrum, one can
demonstrate that
the ratio of the line width to the line separation is ∼< 0.04.

Spectrum is really discrete!

The result refers to photons with 2 polarizations.
Similar formulae hold for other particles,
but one should change, in particular, the statistical weight.



Is Radiation of Quantized Black Holes Observable?

Dark matter of density ρ(r) in Solar system (interacting with the usual one
only gravitationally) results in additional perihelion rotation

δφ

2π
= −2πρ(r)r3

M
.

We assume that ρ(r) is spherically-symmetric and centered on the Sun,
and that the orbit eccentricity is small; M is mass of the Sun.

Analysis of observational data for secular perihelion precession of Earth
and Mars results in the upper limit (Khriplovich, Pitjeva):

ρ(r) < 3 × 10−19 g/cm3 .



Estimates for the expected signal from PBHs (Khriplovich, Produit)
are performed under the (optimistic) assumption that their density is
ρ ' 10−19 g/cm3.

PBH with initial mass m ∼< m0 = 5 × 1014 g cannot survive till our time
due to their radiation. For masses larger than 1017 g, the signal gets hopelessly
small. The estimates for reasonable masses are as follows:





m, g n, cm−3 r̄, cm T , MeV N , ph s−1 ν, ph cm−2 s−1

5 × 1014 2 × 10−34 1.7 × 1011 20 6 × 1019 1.6 × 10−4

2 × 1015 5 × 10−35 2.7 × 1011 5 1.5 × 1019 1.6 × 10−5

1016 10−35 0.5 × 1012 1 3 × 1018 10−6

1017 10−36 1012 0.1 3 × 1017 2 × 10−8

Table 1: Predictions for radiation of primordial black holes in Solar system



The typical signature of radiating PBH would be 2 — 3 relatively

strong lines in the spectrum, for instance, with energies

about 5, 10, 15 MeV for PBH with mass 2 × 1015 g.

In particular, the plot below demonstrates that the sensitivity
of SPI spectrometer aboard the INTEGRAL satellite
is in principle sufficient to observe the line around 5 MeV.
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Figure 1: Sensitivity of IBIS imager for narrow line of point-like source exposed
for 104 s and of the SPI spectrometer for point-like source exposed for 106 s



It can be demonstrated that our assumption
on the density of PBHs in the Solar system does not contradict
the best observational upper limits on it.

These limits do not preclude
the searches for quantized PBHs in the Solar system.

One should try! (Telegdi)


