

Where is Two-photon-exchange effects and Why should you be bothered by them.....

Chung-Wen Kao Chung-Yuan Christian University Taiwan

In collaboration of Shin Nan Yang (NTU), Yu Bing Dong (CAS), Yu Chun Chen (NTU) and Hai Qing Zhou(NTU)

2007,4.3. INT. ``Fundamental Neutron Physics" Program

Nucleon Form Factors

 Hofstadter determined the precise size of the proton and neutron by measuring their form factor.

Nucleon vertex: $\tau \equiv Q^{2}/4M^{2}$ $\Gamma_{\mu}(p',p) = \underbrace{F_{1}(Q^{2})}_{Dirac} \gamma_{\mu} + \frac{i\kappa_{p}}{2M_{p}} \underbrace{F_{2}(Q^{2})}_{Pauli} \sigma_{\mu\nu}q^{\nu}$ $G_{E}(Q^{2}) = F_{1}(Q^{2}) - \kappa_{N}\tau F_{2}(Q^{2})$ $G_{M}(Q^{2}) = F_{1}(Q^{2}) + \kappa_{N} F_{2}(Q^{2})$ At $Q^{2} = 0$ $G_{Mp} = 2.79$ $G_{Mn} = -1.91$ $G_{Ep} = 1$ $G_{En} = 0$

Rosenbluth Separation Method

Within one-photon-exchange framework:

$$\sigma_R(Q^2,\varepsilon) \equiv \frac{d\sigma}{d\Omega_{Lab}} \frac{\varepsilon(1+\tau)}{\tau\sigma_{Mott}} = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$$
$$\frac{1/\varepsilon \equiv 1 + 2(1+\tau) \tan^2 \theta_{Lab}/2}{0 \le \varepsilon \le 1} \quad \tau_N = Q^2/4M_N^2 \qquad \sigma_{Mott} = \frac{\alpha^2 E_3 \cos^2 \frac{\theta}{2}}{4E_1^3 \sin^4 \frac{\theta}{2}}$$

the slope of $\sigma_R(\varepsilon)$ is directly related to G_E and the intercept to G_M

Polarization Transfer Method

$$R = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \cdot \frac{P_t}{P_l}, \qquad \qquad R = G_E/G_M$$

 P_l is the polarization parallel to its momentum P_t is the polarization perpendicular to its momentum **Polarization transfer cannot determine the values of G_F and**

 G_M but can determine their ratio R.

Two methods, Two Results!

 $\mu_p R = \mu_p G_E^p / G_M^p = 1 - 0.13 (Q^2 \ [\text{GeV}^2] - 0.04)$

Two-Photon-Exchange Effects on two techniques $\sigma_R = G_M^2 \left(1 + 2 \frac{\mathcal{R}\left(\delta \tilde{G}_M\right)}{G_M} \right) \qquad \text{large}$ small $+ \varepsilon \left\{ \frac{1}{\tau} G_E^2 \left(1 + 2 \frac{\mathcal{R}\left(\delta \tilde{G}_E\right)}{G_E} \right) + 2G_M^2 \left(1 + \frac{1}{\tau} \frac{G_E}{G_M} \right) \frac{\nu}{M^2} \frac{\mathcal{R}\left(\tilde{F}_3\right)}{G_M} \right\}$ + $\mathcal{O}(e^4)$ $\frac{P_t}{P_l} = -\sqrt{\frac{2\varepsilon}{\tau (1+\varepsilon)}} \qquad \left\{ \frac{G_E}{G_M} \left(1 - \frac{\mathcal{R}\left(\delta \tilde{G}_M\right)}{G_M} \right) + \frac{\mathcal{R}\left(\delta \tilde{G}_E\right)}{G_M} \right. \right\}$ $+\left(1-\frac{2\varepsilon}{1+\varepsilon}\frac{G_E}{G_M}\right)\left|\frac{\nu}{M^2}\frac{\mathcal{R}\left(\tilde{F}_3\right)}{G_M}\right|$ $+\mathcal{O}(e^4)$

Possible explanation

- 2-photon-exchange effect can be large on Rosenbluth method when Q² is large.
- 2-Photon-exchange effect is much smaller on polarization transfer method.
- Therefore 2-photon-exchange may explain the difference between two results.

Guichon, Vanderhaeghen, PRL 91 (2003)

One way or another.....

There are two ways to estimate the TPE effect:

Use models to calculate Two-Photon-Exchange diagrams: Like parton model, hadronic model and so on.....

Direct analyze the cross section data by including the TPE effects:

$$\sigma_R(Q^2,\varepsilon) = G_M^2(Q^2) + \frac{\varepsilon}{\tau}G_E^2(Q^2) + F(Q^2,\varepsilon) = \sigma_R^{1\gamma}(1+\delta_{2\gamma})$$

One-Photon-

Two-photon-exchange

Hadronic Model Result

Blunden, Tjon, Melnitchouk (2003, 2005)

Results of hadronic model

Partonic Model Calculation

*P*_q*H*_{P'}_q*N GPDs*

Y.C.Chen, Afanasev,Brodsky, Carlson, Vanderhaeghen (2004)

Model-independent analysis

 $R = G_E/G_M \text{ Determined from polarization transfer data}$ $\sigma_R = G_M^2(Q^2) \left(1 + \frac{\varepsilon}{\tau}R^2\right) + F(Q^2, \varepsilon)$ InputsTPE effects
From crossing symmetry and charge conjugation:

$$F(Q^2, y) = -F(Q^2, -y) \qquad \qquad y = \sqrt{\frac{1-\varepsilon}{1+\varepsilon}}$$

Our Choice of
$$F(Q^2, \varepsilon)$$

$$\epsilon \rightarrow 1, y \rightarrow 0, F \rightarrow 0$$
 $\epsilon \rightarrow 0, y \rightarrow 1, F \neq 0$

Fit (A)

$$\sigma_R = G_M^2(Q^2) \left(1 + \frac{\varepsilon}{\tau} R^2\right) + A(Q^2)y + B(Q^2)y^3$$

Fit (B) $\sigma_R = G_M^2(Q^2) \left(1 + \frac{\varepsilon}{\tau}R^2\right) + \hat{A}(Q^2)y + \hat{B}(Q^2)y(\ln|y|)^2$

Fit (A) :

$$A(Q^2) = \alpha G_D^2(Q^2), \ B(Q^2) = \beta G_D^2(Q^2), \ G_D = \frac{1}{(1+Q^2/0.71)^2},$$

$$\alpha = -0.221 \qquad \beta = -0.28$$

Fit (B):

$$\hat{A}(Q^2) = \hat{\alpha} G_D^2(Q^2), \ \hat{B}(Q^2) = \hat{\beta} G_D^2(Q^2), \ G_D = \frac{1}{(1+Q^2/0.71)^2},$$

$$\hat{\alpha} = -0.614$$
 $\hat{\beta} = -0.205$

ε

3

Puzzle about nonlinearity

V.Tvaskis et al, PRC 73, 2005

$$\Delta_{max} = \frac{(\sigma - \sigma_{fit})_{max}}{\sigma} \approx P_2 \cdot (\Delta \varepsilon)^2 / 8$$

	$\langle P_2 \rangle$	$ P_2 _{max}$	Δ_{max}
		95% C.L.	95% C.L.
Elastic	0.019(27)	0.064	$0.8\% \cdot (\Delta \varepsilon)^2$
Resonance	-0.060(42)	0.086	$1.1\% (\Delta \varepsilon)^2$
DIS	-0.012(71)	0.146	$1.8\% \cdot (\Delta \varepsilon)^2$

Purely due to TPE

$$\tau_{R}(\varepsilon) = \left(G_{M}^{2} + \frac{G_{E}^{2}}{2\tau} + C_{0}\right) + \left(\frac{G_{E}^{2}}{\tau} + C_{1}\right)\left(\varepsilon - \frac{1}{2}\right) + C_{2}\left(\varepsilon - \frac{1}{2}\right)^{2} + \mathcal{O}((\varepsilon - \frac{1}{2})^{3})$$

Fit (A) :

$$C_0 = \frac{A+3B}{\sqrt{3}}, \ C_1 = \frac{4(A+B)}{3\sqrt{3}}, \ C_2 = \frac{16B}{9\sqrt{3}},$$

Fit (B):

$$C_0 = \frac{4\hat{A} + \ln^2 3\hat{B}}{4\sqrt{3}}, \ C_1 = \frac{4\hat{A} + (4\ln 3 - \ln^2 3)\hat{B}}{3\sqrt{3}}, \ C_2 = \frac{(16 - 8\ln 3)\hat{B}}{9\sqrt{3}}$$

TPE contribution to slope

$$\sigma_R = P_0 \cdot \left[1 + P_1(\varepsilon - \frac{1}{2}) + P_2(\varepsilon - \frac{1}{2})^2 \right]$$

Fit (A)

Q^2 [GeV ²]	$G_M^2(10^{-3})$	$\frac{1}{\tau}G_E^2(10^{-3})$	$A(10^{-3})$	$B(10^{-3})$	$P_2(\%)$	χ^2	N_{points}
1.75	62.68	9.75	-1.533	-1.943	-3.15	0.110	4
2.50	21.55	1.80	-0.529	$-0.670 \setminus$	-3.28	0.177	7
3.25	9.236	0.436	-0.228	-0.289	-3.36	0.095	5
4.00	4.526	0.120	-0.114	-0.145	-3.44	0.366	6
5.00	2.027	0.023	-0.053	-0.068	+3.69	0.582	5

Fit (B)

Q^2 [GeV ²]	G_M^2 (10 ⁻³)	$\frac{1}{\tau}G_E^2(10^{-3})$	$\hat{A}(10^{-3})$	$\hat{B}(10^{-3})$	$P_2(\%)$	χ^2	N_{points}
1.75	63.88	9.982	-4.261	-1.422	-0.99	0.191	4
2.50	22.00	1.841	-1.470	-0.491	-1.03	0.162	7
3.25	9.436	0.446	-0.635	-0.212	-1.06	0.122	5
4.00	4.625	0.123	-0.317	-0.106	-1.09	0.329	6
5.00	2.073	0.024	-0.147	-0.049	-1.14	0.629	5

Common features of Two fits

- G_M increase few percents compared with Rosenbluth results
- G_E are much smaller than Rosenbluth
- Result at high Q²
- OPE-TPE interference effects are always destructive
- TPE play important role in the slope
- TPE give very small curvature

Any other places for TPE?

Normal spin asymmetries in elastic eN directlynproportional to the imaginary part of 2-photon exchange amplitudes

spin of beam OR target NORMAL to scattering plane

Comparison of $e^{-}p/e^{+}p$: Amp($e^{-}p$)=Amp(1γ)+Amp(2γ) Amp($e^{+}p$)=Amp(1γ)-Amp(2γ)

Due to Charge conjugation

Electron-Deuteron elastic scattering

$$\begin{split} K &\equiv \frac{1}{2}(k+k') \\ P &\equiv \frac{1}{2}(p+p') \\ q &\equiv k-k'=p'-p \end{split}$$

$$G_M = G_2, \quad G_Q = G_1 - G_2 + (1 + \tau)G_3,$$

 $G_C = G_1 + \frac{2}{3}\tau G_Q.$

$$\begin{split} \boldsymbol{\Gamma}_{\boldsymbol{\mu}} &= -e_D \left\{ \begin{bmatrix} G_1(Q^2) \boldsymbol{\xi}^{\prime *}(\boldsymbol{\lambda}^{\prime}) \cdot \boldsymbol{\xi}(\boldsymbol{\lambda}) &- G_3(Q^2) \frac{(\boldsymbol{\xi}^{\prime *}(\boldsymbol{\lambda}^{\prime}) \cdot q)(\boldsymbol{\xi}(\boldsymbol{\lambda}) \cdot q)}{2M_D^2} \end{bmatrix} \cdot P_{\boldsymbol{\mu}} \right. \\ &+ \left. \left. \left. + G_2(Q^2) \left[\boldsymbol{\xi}_{\boldsymbol{\mu}}(\boldsymbol{\lambda})(\boldsymbol{\xi}^{\prime *}(\boldsymbol{\lambda}^{\prime}) \cdot q) - \boldsymbol{\xi}_{\boldsymbol{\mu}}^{\prime *}(\boldsymbol{\lambda}^{\prime})(\boldsymbol{\xi}(\boldsymbol{\lambda}) \cdot q) \right] \right\} \end{split}$$

Electron-Deuteron elastic scattering

Within One-Photon-Exchange Framework:

other observables.

Polarization transfer

and Gq.

Electron Scattering Plane

Plane

 $a=\pm 1/2$, polarization of incoming elect $\frac{d^2\sigma}{d\Omega d\Omega_0} = \frac{d^2\sigma}{d\Omega d\Omega_0} \left| \left\{ 1 + \frac{3}{2} a p_x A_y \sin \phi_2 + \frac{1}{2} p_{zz} A_{zz} \right\} \right|_0$ $+\frac{2}{3}p_{xz}A_{xz}\cos\phi_{2}+\frac{1}{6}(p_{xx}-p_{yy})(A_{xx}-A_{yy})\cos 2\phi_{2}$

Ay: Vector analyzing power of the secondary scattering Azz, Axz, Axx-Ayy: Tensor polarization of the second scattering Px, Pzz, Pxz and Pxx-Pyy Secondary Scattering are functions of form factors Gc,Gm

Polarized deuteron target

$$\frac{\sigma}{\sigma_0} = 1 + (P_{zz}/\sqrt{2}) \left(\frac{3\cos^2\theta^* - 1}{2} T_{20} - \sqrt{\frac{3}{2}}\sin 2\theta^* \cos \phi^* T_{21} + \sqrt{\frac{3}{2}}\sin^2\theta^* \cos 2\phi^* T_{22} \right)$$
$$P_{zz} = \sqrt{2}T_{20}, \quad P_{xz} = -\sqrt{3}Re(T_{21}), \qquad (P_{xx} - P_{yy}) = 2\sqrt{3}Re(T_{22}),$$
$$P_z = -\sqrt{\frac{2}{3}}T_{10}, \quad P_y = -\frac{2\sqrt{3}}{3}Im(T_{11}), \qquad P_x = -\frac{2\sqrt{3}}{3}Re(T_{11}).$$

Py=0 within One-Photon-Exchange framework.

 $P_{zz}=n_++n_-2n_0$: degree of polarization of the target deuteron

Polarization observables of e-D scattering

Within One-Photon-Exchange framework

$$-I_0 P_{zz} = \frac{8}{3} \tau (G_C G_Q) + \frac{8}{9} \tau^2 G_Q^2 + \frac{1}{3} \tau \Big[1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \Big] G_M^2$$

$$I_0 P_{xz} = -\tau \frac{K_0}{M_D} \tan \frac{\theta}{2} G_M G_Q \qquad \qquad I_0 (R_0)$$

$$I_0(P_{xx} - P_{yy}) = -\tau G_M^2$$

$$I_0 P_z = \frac{1}{3} \frac{K_0}{M_D} \sqrt{\tau(\tau+1)} \tan^2 \frac{\theta}{2} G_M^2 \qquad K_0^2 = 4M_D^2 \tau \left[(1+\tau) + \cot^2 \frac{\theta}{2} \right]$$

$$I_0 P_x = -\frac{4}{3}\sqrt{\tau(\tau+1)}\tan\frac{\theta}{2}G_M\left(G_c + \frac{1}{3}\tau G_Q\right)$$

Constraints between observables

$$\mathcal{C}_{1} = I_{0}(1+2P_{zz}) = G_{C}^{2} - \frac{16}{3}\tau G_{C}G_{Q} - \frac{8}{9}\tau^{2}G_{Q}^{2},$$

$$\mathcal{C}_{2} = \frac{(I_{0}P_{xz})(I_{0}P_{x})}{I_{0}P_{z}} = 4\tau G_{Q}\left(G_{C} + \frac{\tau}{3}G_{Q}\right).$$

$$\mathcal{C}_1 + \frac{4}{3}\mathcal{C}_2 = G_c^2 + \frac{8}{9}\tau^2 G_Q^2 > 0.$$

Those combinations are independent of θ when all observables are Θ -dependent.

It is easy to use the above combinations to test under which kinematic conditions TPE become important.

Amplitudes of e-D scattering (beyond OPE)

$$\mathcal{M}^{eD} = -e^{2}\bar{u}(p_{3},s_{3})\gamma_{\mu}u(p_{1},s_{1})\frac{1}{q^{2}}\sum_{i=1}^{6}\tilde{G}_{i}M_{i}^{\mu}$$

$$M_{1}^{\mu} = (\xi'^{*}\cdot\xi)P^{\mu},$$

$$M_{2}^{\mu} = \left[\xi^{\mu}(\xi'^{*}\cdot q) - (\xi\cdot q)\xi'^{*\mu}\right],$$

$$M_{3}^{\mu} = -\frac{1}{2M_{D}^{2}}(\xi\cdot q)(\xi'^{*}\cdot q)P^{\mu},$$

$$K = \frac{1}{2M_{D}^{2}}(\xi\cdot K)(\xi'^{*}\cdot K)P^{\mu},$$

$$M_{4}^{\mu} = \frac{1}{2M_{D}^{2}}(\xi\cdot K)(\xi'^{*}\cdot K)P^{\mu},$$

$$K = \frac{1}{2}(k+k')$$

$$P = \frac{1}{2}(k+k')$$

$$P = \frac{1}{2}(p+p')$$

$$q = k-k' = p'-p$$

Cross section in term of G⁽²⁾1-6

$$\frac{d\sigma}{d\Omega} = \sigma_0 \left\{ \left[(A + \Delta A) \cot^2 \frac{\theta}{2} + (B + \Delta B) \right] + \Delta \sigma(\theta, Q^2) \cot^2 \frac{\theta}{2} \right\}$$

$$\Delta A = 2 \Big[G_c Re(G_C^{(2)*}) + \frac{2}{3} \tau G_M Re(G_M^{(2)*}) + \frac{8}{9} \tau^2 G_Q Re(G_Q^{(2)*}) \Big] \\ + \frac{4\tau^2}{3} \Big[(2\tau+1)G_1 - 2(\tau+1)G_2 + 2\tau(\tau+1)G_3 \Big] Re(G_4^{(2)*}) \Big]$$

$$\Delta B = \frac{8}{3}\tau(1+\tau)G_M Re(G_M^{(2)*})$$

$$\begin{aligned} \Delta\sigma(\theta,Q^2) &= \frac{2}{3} \Big\{ 2\tau \cot^2 \frac{\theta}{2} \Big[(2\tau-1)G_1 - 2\tau G_2 + 2\tau^2 G_3 \Big] Re(G_4^{(2)*}) \\ &+ \frac{K_0}{M_D} \Big[\Big((2\tau-1)G_1 - 2\tau G_2 + 2\tau^2 G_3 - 2\tau \tan^2 \frac{\theta}{2} G_2 \Big) Re(G_5^{(2)*}) \\ &+ 2\tau \Big((2\tau+1)G_1 - (2\tau+1)G_2 + 2\tau(\tau+1)G_3 \Big) Re(G_6^{(2)*}) \Big] \Big\}, \end{aligned}$$

Y-B. Dong, C. -W. Kao, S.-N. Yang, Y.-C.

Polarization observables in term of G $^{\scriptscriptstyle (2)}$ $_{\scriptscriptstyle 1-6}$

$$-I_0 P_{zz} = \frac{8}{3} \tau (G_C G_Q) + \frac{8}{9} \tau^2 G_Q^2 + \frac{1}{3} \tau \Big[1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \Big] G_M^2 + \Delta P_{zz}$$
$$\Delta P_{zz} = \delta P_{zz} + \delta_0 P_{zz}$$

$$\begin{split} \delta P_{zz} &= \frac{4\tau^2}{3} \Big[2(2\tau+1)G_1 - (4\tau+1)G_2 + 4\tau(\tau+1)G_3 \Big] Re(G_4^{(2)*}) \\ &+ \frac{4}{3}\tau \cot^2 \frac{\theta}{2} \Big[\frac{4\tau^2+2\tau+1}{\tau+1}G_1 - \frac{\tau(4\tau+1)}{\tau+1}G_2 + 4\tau^2G_3 \Big] Re(G_4^{(2)*}) \\ &+ \frac{2K_0}{3M} \Big[\Big(\frac{4\tau^2+2\tau+1}{\tau+1}G_1 - \frac{3\tau(2\tau+1)}{2(\tau+1)}G_2 + 4\tau^2G_3 + 2\tau^2\tan^2 \frac{\theta}{2}G_2 \Big) Re(G_5^{(2)*}) \\ &+ \tau \Big(4(2\tau+1)G_1 - (8\tau+1)G_2 + 8\tau(\tau+1)G_3 \Big) Re(G_6^{(2)*}) \Big] , \end{split}$$

$$\delta_0 P_{zz} = \frac{8}{3} \tau \Big[G_C Re(G_Q^{(2)*}) + G_Q Re(G_C^{(2)*}) \Big] \\ + \frac{16}{9} \tau^2 G_Q Re(G_Q^{(2)*}) + \frac{2}{3} \tau \Big[1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \Big] G_M Re(G_M^{(2)*}) \Big]$$

Small θ Limit

Small θ Limit (continued)

$$\begin{aligned} \Delta(P_{xx} - P_{yy}) &\sim \frac{4\tau}{\tau + 1} \cot^2 \frac{\theta}{2} \left(G_1 + \tau G_2 \right) Re(G_4^{(2)*}) \\ &+ \frac{4\sqrt{\tau}}{\tau + 1} \cot \frac{\theta}{2} \left[\left(G_1 + \tau G_2 \right) Re(G_5^{(2)*}) + \tau(\tau + 1) G_2 Re(G_6^{(2)*}) \right] \end{aligned}$$

- ,

$$\begin{aligned} \Delta P_z &\sim -\frac{2\tau}{3}\sqrt{\frac{\tau}{\tau+1}} \Big[2\sqrt{\tau} \cot \frac{\theta}{2} Re(G_4^{(2)*}) + 3Re(G_5^{(2)*}) + 2(\tau+1)Re(G_6^{(2)*}) \Big] G_2. \\ \Delta P_x &\sim \frac{2\tau\sqrt{\tau+1}}{3} \Big[\Big(2G_1 - \frac{4\tau+1}{\tau+1}G_2 + 2\tau G_3 \Big) Re(G_5^{(2)*}) - 4\tau G_2 Re(G_6^{(2)*}) \Big] \\ &- \frac{4}{3} \frac{\tau^2\sqrt{\tau}}{\sqrt{\tau+1}} \cot \frac{\theta}{2} G_2 Re(G_4^{(2)*}). \end{aligned}$$

 $\operatorname{Re} G_4^{(2)}(\theta,Q^2) \hspace{.1in} \leq \hspace{.1in} \theta^2, \hspace{.1in} \operatorname{Re} G_5^{(2)}(\theta,Q^2) \leq \theta, \hspace{.1in} \operatorname{Re} G_6^{(2)}(\theta,Q^2) \leq \theta \hspace{.1in} \text{when} \hspace{.1in} \theta \longrightarrow 0.$

TPE on Px and Pz vanish at small angels but TPE on other obsevables survive.

$$\begin{split} \frac{d\sigma}{d\Omega}\Big|_{\theta \to \pi} &\sim \sigma_0(B + \Delta B') \\ \Delta B' &= -\frac{8}{3}\tau \sqrt{\tau(1+\tau)}G_2(Q^2)Re(G_5^{(2)*}) + \frac{8}{3}\tau(1+\tau)G_2Re(G_2^{(2)*}) \\ \Delta P_{zz} &\sim \frac{8}{3}\tau^2 \sqrt{\tau(\tau+1)}\tan^2\frac{\theta}{2}G_2Re(G_5^{(2)*}) + \frac{4}{3}\tau(\tau+1)\tan^2\frac{\theta}{2}G_2Re(G_2^{(2)*}), \\ \Delta P_z &\sim -\frac{4}{3}\sqrt{\tau(\tau+1)}\tan^2\frac{\theta}{2}\Big[\sqrt{\tau(\tau+1)}Re(G_M^{(2)*}) - Re(G_5^{(2)*})\Big]G_2. \end{split}$$

TPE effects on other observables vanish when Θ approaches $\pi/2$

Calculation of TPE amplitude

In progress, collaboration with H-Q Zhou, S.N Yang (NTU), and Y.B. Dong (CAS)

Summary and Outlook

- The different results of Rosenbluth separation and Polarization transfer method stimulate a lot of theoretical and experimental research of TPE.
- Calculation based on models show TPE is important for extraction of form factors.
- Our model-independent analysis shows that the more precise data at lower ϵ is crucial for the extraction of TPE and nucleon form factors.
- TPE effects of e-D scattering is under investigation.
- TPE effects of e-D is more complicated.
- More TPE-related research is going: $N \rightarrow \Delta$ transition form factor, normal beam asymmetry and so on...