Semileptonic Decay Processes in Light-Front Dynamics

INT Seattle, May 4, 2007

Motivation

- Precision test of standard model seems promising.
 -Unitarity of CKM mixing matrix (CP-violation)
 -B Physics (Babar,Belle,BTeV,LHCB,...)
 -UCN Collaborations (...,NC State,...)
 -Demand on finding hadron wavefunction (QCD)
- LFD has progressed for last several years.
 Distinguished Features (Vacuum, Symmetry)
 - -Treacherous Points (Zero-Mode, Arc-Contribution)

-Applications to Phenomenology (JLab,RHIC,...) Time to review progress and scrutinize phenomenological model building based on QCD...

Outline

- Why LFD?
 - Distinguished Features in LFD
 - Application to Hadron Phenomenology
- Treacherous Points in Semileptonic Processes
 - Non-Valence Contribution
 - Zero-Modes
- Power Counting Method
 - Correct Assessment of Zero-Modes
 - Scrutinization of LFQM
- Conclusions

Distinguished Features in LFD

LFD is like sweeping dirt to a corner:

Simple Vacuum except Zero-Modes, Maximum Number of Kinematic Generators

Energy-Momentum Dispersion Relations

g-2 calculation

g-2 calculation

• Vacuum fluctuations are suppressed in LFD and clean hadron phenomenology is possible.

Applications to Hadron Phenomenology

Form Factors $| p \rightarrow l' p' < p' \lambda' | J^{+}(0) | p \lambda >$

Virtual Compton $\gamma^* p \rightarrow \gamma' p'$ < $p'\lambda' | J^{\mu}(z) J^{\nu}(0) | p\lambda >$

Vector Meson Leptoproduction $\gamma^* p \rightarrow V^* p'$

LFD in Exclusive Processes

LFD in Exclusive Processes

JLab Hall A Collaboration, PRL98, 152001(2007)

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Hadronization Mechanisms

R.J. Fries, nucl-th/0403036, PRC 68, 044902 (2003)

Light-Front Wavefunctions

 β^2 (GeV²) = 0.026

0.26

2.6

Single Spectra of Mesons

Unitarity Triangle

Triangle in Wolfenstein parametrization

Unitarity Triangle

Triangle in Wolfenstein parametrization

C.Ji and H.-M.Choi, NPB (Proc. Suppl.) 90 (2000) 93-99 B-physics phenomenology with emphasis on the light-cone

Mixing Matrix Elements V_{ii} |V_{ud}|=0.9740±0.0005 Superallowed $0 \rightarrow 0 +$ nuclear β decay nucleon β decay, pion β decay, ... $|V_{us}| = 0.2196 \pm 0.0023$ $K \to \pi l v_1(K_{13}), \Lambda \to p e v_e, \Sigma^- \to n e v_e, \dots$ $|V_{cd}| = 0.224 \pm 0.016$ $D^0 \rightarrow \pi^- e^+ \nu_e, D^+ \rightarrow \pi^0 e^+ \nu_e, D^+ \rightarrow \mu^+ \nu_\mu, \dots$ $|V_{cs}| = 1.04 \pm 0.16$ $D^0 \rightarrow K^- e^+ \nu_e, D^+ \rightarrow K^0 e^+ \nu_e, \dots$ $|V_{cb}| = 0.0395 \pm 0.0017$ $B^+ \rightarrow D^0 l^+ \nu_i, B^+ \rightarrow D^0 l^+ \nu_i, \dots (HQET)$ $|V_{ub}| = (0.08 \pm 0.02) |V_{cb}| = (3.3 \pm 0.4 \pm 0.7) \times 10^{-3}$ $B \rightarrow \pi l v_l, \rho l v_l, \omega l v_l, B^+ \rightarrow \mu^+ v_\mu, \tau v_\tau, \dots$

Belle Collaboration, Phys. Rev. Lett. 88,021801 (2002) H.-M.Choi, C.Ji and L.S.Kisslinger, Phys. Rev. D65,074032 (2002)

t \rightarrow (b,s,d) l⁺ v (CDF/D0) M_t = 173.8±5.2 GeV τ_t << strong interaction time scale Semileptonic Decay Processes in Light-Front Quark Model W.Jaus, PRD63, 053009(2001)

> QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

 $< P'';00 | J^{\mu}_{V-4} | P';00>$ $= f_{+}(q^{2})(P' + P'')^{\mu} + f_{-}(q^{2})q^{\mu}$

where

$$q = P' - P''$$

Semileptonic Decay Processes in Light-Front Quark Model W.Jaus, PRD63, 053009(2001)

> QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

β Decay up to O(α) Total Decay Rate : $1/\tau = 1/\tau_0(1+\delta)$

where

A.Sirlin, RMP50, 573 (1978); PR164, 1767(1967) W.J.Marciano and A.Sirlin, PRL56, 22 (1986) Semileptonic Decay Processes are timelike : $q^2=q^+q^-q_\perp^2 > 0$ or $q^+\neq 0$.

Semileptonic Decay Processes are timelike : $q^2=q^+q^-q^{-2} > 0$ or $q^+\neq 0$.

C.Ji & H.M.Choi, Phys.Lett.B460, 461 (1999)

Zero-Mode Issue in LFD

 Even if q⁺→0, the off-diagonal elements do not go away in some cases.

$$\lim_{q^+ \to 0} \int_{p^+}^{p^+ + q^+} dk^+ (....) \neq 0$$

Zero-Mode Issue in LFD

 Even if q⁺→0, the off-diagonal elements do not go away in some cases.

$$\lim_{q^+ \to 0} \int_{p^+}^{p^+ + q^+} dk^+ (....) \neq 0$$

Vector Anomaly in SM (Anomalous Magnetic Moment of W[±]) B.Bakker and C.Ji, PRD71,053005(2005)

CP-Even Electromagnetic Form Factors of W[±]Gauge Bosons

 $\Gamma^{\mu}_{\alpha\beta} = ie \left\{ A \left[(p+p')^{\mu} g_{\alpha\beta} + 2(q_{\beta} g^{\mu}_{\alpha} - q_{\alpha} g^{\mu}_{\beta}) \right] + (\Delta \kappa)(g^{\mu}_{\alpha} q_{\beta} - g^{\mu}_{\beta} q_{\alpha}) + \frac{(\Delta Q)}{2M_{\mu}^{2}}(p+p')^{\mu} q_{\alpha} q_{\beta} \right\}$

At tree level, for any q²,

 $A = 1, \quad \Delta \kappa = 0, \quad \Delta Q = 0$ Beyond tree level, $A = F_1(q^2),$ $-(\Delta \kappa) = F_2(q^2) + 2F_1(q^2),$ $-(\Delta Q) = F_3(q^2),$ $\Gamma^{\mu}_{\alpha\beta} = -ie J^{\mu}_{\alpha\beta}$ $J^{\mu}_{\alpha\beta} = \left\{ -(p+p')^{\mu} g_{\alpha\beta} F_1(q^2) + (g^{\mu}_{\alpha} q_{\beta} - g^{\mu}_{\beta} q_{\alpha}) F_2(q^2) + \frac{q_{\alpha} q_{\beta}}{2M_{\cdots}^2} (p+p')^{\mu} F_3(q^2) \right\}$

LFD Results

 $G_{hh}^{+} = \langle h', p' | J^{+} | h, p \rangle \quad in \quad q^{+} = 0 \quad frame \quad with \quad \eta = Q^{2} / 4M_{W}^{2} \quad (Q^{2} = -q^{2}),$ $G_{++}^{+} = 2p^{+}(F_{1} + \eta F_{3}), G_{+0}^{+} = p^{+} \sqrt{2\eta}(2F_{1} + F_{2} + 2\eta F_{3}), G_{+-}^{+} = -2p^{+}\eta F_{3}, G_{00}^{+} = 2p^{+}(F_{1} - 2\eta F_{2} - 2\eta^{2}F_{3})$

Effective Constituent Quark Model for Low Q²

$$\begin{split} \left| Meson \right\rangle &= \psi_{q\bar{q}} \left| q\bar{q} \right\rangle + \psi_{q\bar{q}g} \left| q\bar{q}g \right\rangle + \dots \\ &\approx \Psi_{Q\bar{Q}} \left| Q\bar{Q} \right\rangle, \end{split}$$

where

$$|Q\rangle = \psi_{q}^{Q}|q\rangle + \psi_{qg}^{Q}|qg\rangle + \dots$$
$$|\overline{Q}\rangle = \psi_{\overline{q}}^{\overline{Q}}|\overline{q}\rangle + \psi_{\overline{qg}}^{\overline{Q}}|\overline{qg}\rangle + \dots$$

$$\Psi_{Q\overline{Q}}(x_i, \vec{k}_{\perp i}, \lambda_i) = \Phi(x_i, \vec{k}_{\perp i}) \chi(x_i, \vec{k}_{\perp i}, \lambda_i)$$

Radial (Dependent on the model potential)

H = T + VV includes Coulomb, Confinement, Spin-Spin,Spin-Orbit interactions.

Spin-Orbit

Interaction independent Melosh transformation

$$J^{PC} = 0^{++}(f_0, a_0, ...)$$
$$0^{-+}(\pi, K, \eta, \eta', ...)$$
$$1^{--}(\rho, K^*, \omega, \phi, ...)$$

Mass Spectra of 0⁻⁺ and 1⁻ Mesons

H.M.Choi and C.Ji, Phys.Rev.D59,074015(99)

${}^{1}S_{0}$	Expt. [1]	Prediction	${}^{3}S_{1}$	Expt. [1]	Prediction
π	135 ± 0.0006	135	ρ	770 ± 0.8	770
K	498 ± 0.016	478	K^*	892 ± 0.26	850
η	547 ± 0.12	<u>547</u>	ω	782 ± 0.12	<u>782</u>
η' .	958 ± 0.14	<u>958</u>	ϕ	1020 ± 0.008	1020
D	1865 ± 0.5	1836	D^*	2007 ± 0.5	1998
D_s	1969 ± 0.6	2011	D_s^*	2112 ± 0.7	2109
η_c	2980 ± 2.1	3171	J/ψ	3097 ± 0.04	3225
B	5279 ± 1.8	5235	B *	5325 ± 1.8	5315
B_s	5369 ± 2.0	5375	$(b\overline{s})$	—	5424
$(b\overline{b})$		9657	γ	9460 ± 0.21	9691

Decay Constants and Charge Radii

	$\delta_V = -3.3^\circ \pm 1^\circ$		$\delta_V = +3.3^\circ \pm 1^\circ$		
Observables	НО	Linear	НО	Linear	Experiment
${f}_{\pi}$ [MeV]	92.4	91.8	92.4	91.8	92.4 ± 0.25
f_K [MeV]	109.3	114.1	109.3	114.1	113.4 ± 1.1
f_{ρ} [MeV]	151.9	173.9	151.9	173.9	152.8 ± 3.6
f_{K^*} [MeV]	157.6	180.8	157.6	180.8	
f_{ω} [MeV]	45.9 ± 1.4	52.6 ± 1.6	55.1 ± 1.3	63.1 ± 1.5	45.9 ± 0.7
f_{ϕ} [MeV]	82.6∓0.8	94.3∓0.9	76.7 = 1.0	87.6∓1.1	79.1 ± 1.3
$r_{\pi}^{2} [{\rm fm}^{2}]$	0.449	0.425	0.449	0.425	0.432±0.016 [32]
$r_{K^+}^2 [{\rm fm}^2]$	0.384	0.354	0.384	0.354	0.34±0.05 [32]
$r_{K^0}^2$ [fm ²]	-0.091	-0.082	- 0.091	- 0.082	-0.054 ± 0.101 [32]

Radiative Decay Processes

	$\delta_V = -3.3^\circ \pm 1^\circ$		$\delta_V = +$		
Widths [keV]	НО	Linear	НО	Linear	Experiment
$\overline{\Gamma(ho^{\pm} ightarrow \pi^{\pm} \gamma)}$	76	69	76	69	68±8
$\Gamma(\omega \rightarrow \pi \gamma)$	730 ± 1.3	667 ± 1.3	730∓1.3	667 ± 1.3	717 ± 51
$\Gamma(\phi \! ightarrow \pi \gamma)$	$5.6^{-2.9}_{+3.9}$	$5.1^{-2.6}_{+3.6}$	$5.6^{+3.9}_{-2.9}$	$5.1^{+3.6}_{-2.6}$	5.8 ± 0.6
$\Gamma(ho ightarrow \eta \gamma)$	59	54	59	54	58 ± 10
$\Gamma(\omega \rightarrow \eta \gamma)$	8.7 = 0.3	7.9 ∓ 0.3	6.9 ∓ 0.3	6.3 ± 0.3	7.0 ± 1.8
$\Gamma(\phi \rightarrow \eta \gamma)$	38.7 ± 1.6	37.8 ± 1.5	49.2 ± 1.6	47.6 ± 1.5	55.8 ± 3.3
$\Gamma(\eta' \rightarrow \rho \gamma)$	68	62	68	62	61 ± 8
$\Gamma(\eta' \rightarrow \omega \gamma)$	4.9 ± 0.4	4.5 ± 0.4	7.6 ± 0.4	7.0 ± 0.4	6.1 ± 1.1
$\Gamma(\phi \rightarrow \eta' \gamma)$	0.41 ± 0.01	0.39∓0.01	0.36∓0.01	0.34 = 0.01	< 1.8
$\Gamma(\overline{K^{*0}} \rightarrow \overline{K^0}\gamma)$	124.5	116.6	124.5	116.6	117 ± 10
$\Gamma(K^{*+} \to K^+ \gamma)$	79.5	71.4	79.5	71.4	50 ± 5

2.0

2.0

Branching Ratios and Isgur-Wise Function

Pinning Down Which Form Factors

- Jaus's ω-dependent formulation yields zero-mode contributions both in G₀₀ and G₀₁.
 W.Jaus, PRD60,054026(1999);PRD67,094010(2003)
- However, we find only G₀₀ gets zm-contribution.
 B.Bakker, H.Choi and C.Ji, PRD67, 113007(2003)
 H.Choi and C.Ji, PRD70, 053015(2004)
- Also,discrepancy exists in weak transition form factor A₁(q²)=f(q²)/(M_P+M_V).
 Power Counting Method
 H.Choi and C.Ji, PRD72, 013004(2005)

Electroweak Transition Form Factors

 $< P_{2}; 1h | J_{V-A}^{\mu} | P_{1}; 00 >= ig(q^{2}) \varepsilon^{\mu\nu\alpha\beta} \varepsilon_{V}^{*} P_{\alpha} q_{\beta}$ $-f(q^2)\varepsilon^{*\mu}-a_{\perp}(q^2)(\varepsilon^*\cdot P)P^{\mu}-a_{\perp}(q^2)(\varepsilon^*\cdot P)q^{\mu}$

where

$$P = P_1 + P_2, q = P_1 - P_2$$

$$< J_{V-A}^{\mu} >_{h} = i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{S_{\Lambda_{1}}(P_{1}-k)S_{h}^{\mu}S_{\Lambda_{2}}(P_{2}-k)}{D_{m_{1}}D_{m}D_{m_{2}}}$$

where

$$\begin{split} D_{m} &= k^{2} - m^{2} + i\varepsilon, \\ S_{\Lambda_{i}}(P_{i}) &= \Lambda_{i}^{2} / (P_{i}^{2} - \Lambda_{i}^{2} + i\varepsilon), \\ S_{h}^{\mu} &= Tr \Big[(p_{2} + m_{2}) \gamma^{\mu} (1 - \gamma_{5}) (p_{1} + m_{1}) \gamma_{5} (-k + m) \varepsilon^{*} \cdot \Gamma \Big], \\ \Gamma^{\mu} &= \gamma^{\mu} - \frac{(P_{2} - 2k)^{\mu}}{D}, \end{split}$$

and

(1)
$$D_{cov}(M_V) = M_V + m_2 + m,$$

(2) $D_{cov}(k \cdot P_2) = [2k \cdot P_2 + M_V(m_2 + m) - i\varepsilon]/M_V,$
(3) $D_{LF}(M_0) = M_0 + m_2 + m.$

Power Counting Method

$$< J_A^+ >_{z.m.}^h \propto \lim_{\alpha \to 1} \int_{\alpha}^h dx \frac{(1-x)^2}{(1-\alpha)^2} S_h^+(k_{m_1}^-) [\cdots]$$

 $= \lim_{\alpha \to 1} (1-\alpha) \int_{0}^h dz (1-z)^2 S_h^+(k_{m_1}^-) [\cdots],$

where

$$x = \alpha + (1 - \alpha)z \quad and \quad [\cdots] \text{ is regular as } \alpha \to 1.$$

$$S_{h=0}^{+} \quad Power \ Counting:$$

(1) $(1 - x)^{-1} = [(1 - \alpha)(1 - z)]^{-1} \quad for \ D_{cov}(M_V),$
(2) $(1 - x)^{0} \quad for \ D_{cov}(k \cdot P_2),$
(3) $(1 - x)^{-1/2} = [(1 - \alpha)(1 - z)]^{-1/2} \quad for \ D_{LF}(M_0).$

Conclusions

- LFD provides a unified framework to analyze various hadron phenomenologies in Jlab, RHIC, B-factories, etc.
- LFQM progressed in calculations of meson spectra and wavefunctions making some basis for the extension to the study of baryons.
- New precision data can scrutinize the model parameters.
- For the good phenomenology, it is significant to correctly pin down the zero-mode contribution and the power counting method offers a good way to do this.