Search for Neutron Antineutron Oscillations at Super Kamiokande I

Brandon Hartfiel Cal State Dominguez Hills May 1 2007

 a neutron oscillates into an antineutron

time 10³³ years

the

 antineutron
 annihilates
 with another
 nucleon →
 pions

time ~5 x10⁻²⁴ seconds

 the pions traverse and interact with the residual nucleus

time $\sim 2 \times 10^{-23}$ seconds

time <<1 x10⁻⁸ seconds

Outline

- R Nuclear Suppression Factor
- Signal MC
- Detector
- Background Atmospheric Neutrinos
- Analysis
- Future

Oscillation Suppression in Nuclei

Neutron Antineutron Oscillations

Two State non relativistic Schrodingers Equation

where ΔE represents differing responses of n and nbar to the environment: Earth's magnetic field, Surrounding nuclear medium etc

> if $\Delta E \ll \epsilon$ Free oscillation probability = $\epsilon^2 t^2$

n and nbar wavefunctions

(based roughly on Dover. For qualitative illustration only)

Some calculations of R

Author	Year	Potential	R	$\rm R_O/R_{Fe}$	From providually about
			(10 ²³ sec ⁻	¹)	notential uncertainty
Dover	1983	249+i107	1.2	.71	
Dover	1983	107+i222	.8	.71	Batty Nuc Phys A 466(1987)
Alberico	1991	Various	1.7-2.6	?	200 - 12
Hufner	1998	40+i40	.69	1.11	160 -
Hufner	1998	200+i40	3.6	.92	120 -
					80 - 08

40

0.5 1.0

2.5 3.0 3.5

2.0

1.5 Tp (10-23s)

We use the most conservative values 3.6 x 10²³ sec⁻¹ for comparing with τ_{free} and .71 when comparing with τ_{free}

Signal MC

Fermi Momentum / Quasi-Invariant Mass

- annihilating antineutron and nucleon are in energy eigenstates.
- Fermi momentum can be taken from scattering data (should match the Fourier Transform of the wavefunctions)
- quasi-invariant mass $m^2 = E^2 p_F^2$
- During roughly 10% of the events, the matter nucleon will be interacting with another nucleon during the annihilation – giving a smaller invariant mass – Yamazaki Phys Lett B 453 (not implemented yet) However, we aren't very sensitive to these effects, setting the Fermi momentum to zero only changes our efficiency by ~10%

Leads to <4.2% uncertainty in final efficiency

Branching Fractions

n pbar annihilations (from pbar deuterium data)

Channel	Tegid's Memo	Our Analysis	Bettini (1967)
$\pi^+ \pi^0$	0%	1%(±1.0)	≤ 0.7%
$\pi^+ \pi^0 \pi^0$	9%	8%(±1.2)	*
$\pi^{+} \pi^{0} \pi^{0} \pi^{0}$	10%	10%(±1.2)	$16.4 \pm 0.5\%$
$\pi^+ \pi^+ \pi^- \pi^0$	22%	22%(±1.8)	21.8 ± 2.2%*
$\pi^{+} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$	36%	36%(±1.8)	59.7 ± 1.2%
$2\pi^+\pi^-\omega$	*	16%(±4)	$12.0 \pm 3.0\%$ *
$3\pi^+ 2\pi^- \pi^0$	23%	7%(±4)	$23.4 \pm 0.7\%$
$4\pi^{+} 3\pi^{-} m\pi^{0}$	0%	0%	$0.39 \pm 0.07\%$
$\pi^+ \pi^+ \pi^-$	0%	0%	$1.57 \pm 0.21\%$

p pbar annihilations (use isospin invariance)

Channel	Tegid's Memo	Our Analysis	Cresti Paper	Baltay (
			(1963)	1966)
$\pi^+ \pi^-$	0%	2%(±.4)	$0.33 \pm 0.48\%$	$0.32 \pm 0.03\%$
$\pi^0 \pi^0$	0%	1.52%(±.4)		$3.20 \pm 0.50\%$
$\pi^+ \pi^- \pi^0$	10%	6.48%(±.7)	$5.4 \pm 0.7\%$	$7.8 \pm 0.9\%$
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	11%	11%(±1.3)		*
$\pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0}$	26%	28%(±1.3)		$34.5 \pm 1.2\%$
$2\pi^{+} 2\pi^{-}$	7%	7%(±1.4)	$5.4 \pm 0.3\%$	$5.8 \pm 0.3\%$
$2\pi^+ 2\pi^- \pi^0$	22%	24%(±3.4)	$22.6 \pm 0.7\%$	$18.7 \pm 0.9\%$
$\pi^+ \pi^- \pi^0 \omega$	*	10%(±0.9)		*
$2\pi^+ 2\pi^- \pi^0 \pi^0$	20%	10%(±0.9)		$21.3 \pm 1.1\%$
$3\pi^+ 3\pi^-$	0%	0%	$1.7 \pm 0.2\%$	$1.9 \pm 0.2\%$
$3\pi^{+} 3\pi^{-} \pi^{0}$	0%	0%	$1.7 \pm 0.2\%$	$1.6 \pm 0.3\%$

Decays are according to phase space (Genbod)

Leads to 5.2% uncertainty in final efficiency

Pion (and Omega) Propagation

25% of pions absorbed 25%scattered 2.2 charged 1.3 neutral pions escape

- Pions propagate through the residual nucleus in .2 fm steps.
- Total pion-nucleus cross section is taken from scattering experiments and distributed throughout the residual nucleus according to the nuclear density
- Cross section peak due to $\Delta(1232)$

Leads to 12.5% uncertainty in final efficiency

Fermi Momentum / Pauli Blocking

- Nucleons of the residual nucleus are assigned a fermi momentum.
- For a fermi gas of local density ρ

$$p_{\rm max} \propto \rho^{\frac{1}{3}}$$

 Reactions that would result in a final state momentum > p_{max} are not allowed – Pauli Blocking

Nuclear De-excitation / Break-up

Gamma rays- P 3/2 holes will decay with the emission of a 6 MeV gamma – but this overlaps the rest of our signal.

In events with a pion interaction we currently create nuclear fragments (p n d He etc.) that statistically match inclusive multiplicities from antiproton-nucleus data.

Cherenkov Light - some proton fragments will be above threshold, but the amount of light is insignificant compared to the pion contribution.

Neutron decay – another analysis group is working on a special trigger for neutron decay. However it is not clear that a background DIS atmospheric neutrino event would break up differently than a signal nucleus, so a more sophisticated break-up model is probably not worth the effort for this analysis.

Detector

- 22.5 Kton Fiducial
- 2,700 m water equivalent overburden
- 11,146 inner PMTs
- 1,885 outer PMTs
- SK1 4.1 yr (this analysis)
- SK2 ~ 2 yr (1/2 PMTs)
- SK3 ~ 1 yr
- 2.2 nsec timing
- Can see 4.5 MeV neutrinos

Cherenkov Rings

Ring Reconstruction

- Place vertex at point which time of flight is equal to all hit PMTs. Resolution ~30 cm
- 2) For each PMT plot all possible track directions which could have resulted in a 42 degree Cherenkov angle photon hitting the tube. Look for overlaps.
- 3) Reconstruct entire length of track (~1 meter for our events.)

Track Momentum/Event Energy

- The track mometum is determined from the total number of photo-electrons seen near the ring (70 degree ½ angle for single ring events)
- In single ring events the momentum resolution is (2.5/sqrt(GeV) + .5)% for electrons. and 3% for muons
- "Visible Enegry" for an event is defined as the energy of an electromagnetic shower giving the number of photo-electrons we see.

Background Atmospheric Neutrinos

Selected background events

	νμ	Anti-vµ	ve	Anti-ve	
Q.E.	11 (2.0%)	0 (0%)	7 (1.3%)	0 (0%)	
CC 1pi	50 (9.6%)	10 (1.9%)	47 (9.0%)	7 (1.3%)	
CC Mpi	101 (19.4%)	10 (1.9%)	103 (19.8%)	9 (1.7%)	
CC K,eta	6 (1.2%)	6 (1.1%)	8 (1.5%)	1 (.2%)	

NC 1pi	17 (3.3%)
NC mpi	125(24.0%)
NC K,eta	2(0.4%)
NC elastic	1(0.2%)

Background Signatures

* red criteria not currently used

Charged Current Background

 $v_e + n \rightarrow e^- + p + \pi^+ + \pi^- + \pi^0$

Background Direction and Energy

background more likely to come from above (we are currently not using this)

Cosmic Ray and Neutrino Flux

Neutrino cross sections

Solid – Total Dash – Quasi-elastic Dot – single pion Dash-Dot – multi-pion

Multiple pions production models

- For hadronic mass 1.4<W<2.0 GeV, we fit Koba, Nielsen, Olesen (KNO) scaling to experimental pion multiplicities and forward/backward asymmetries from BECB and Gargamelle
- For W>2.0 we use Jetset.

Model dependence leads to 15.5% uncertainty in final background rate

Analysis

Reduction to "Fully Contained" Data Sample

Step	Data	FC MC
Trigger	1.9G	100%
200 PE within 300 nsec, <1/2 of PE in one PMT,<25 Outer Detector (OD) hits,>.1 msec since last event.	302K	99.94
<10 OD hits aligned with an inner muon track. >50 PMT hits within 50 nsec after TOF (eliminates low energy events)	67K	99.83
Elimination of Flashing PMTs -Broad timing distributions eliminated. Hit patterns similar to earlier events removed.	27K	99.17
<10 OD hits in any 200 nsec window in the last 9 $\mu s.$ (removes muons which drop below Cherenkov threshold inside the detector then decay.	24K	97.59
Within fiducial volume (2m from wall). Visible Energy >30 MeV	12K	97.59

Cuts

Red – atmospheric v MC Black – signal MC Dotted - data

High energy leptons from charged current events

 \rightarrow cannot use for reduction.

Systematic uncertainties in the efficiency

	error	Uncertainty		
Detection efficiency	14.9 %			
Fermi momentum	20% of P _f	<4.2%		
Annihilation branching ratio	Baltay('66), Bettini('67)	5.2%		
(model dependence)				
Non-uniformity of detector gain	+/-1.2% of Ptot	4.0%		
Energy scale	+/-2.5% of evis	1.7%		
Ring counting		0.6%		
Nuclear propagation (model dependence)	NEUT	1.7%		
Nuclear propagation (cross section)	Elastic 20%, Charge ex 30%, Abs 25%, Pi prod 30%	12.5%		
Exposure		< 3.2%		
Detector livetime		< 0.1%		
Fiducial volume		3.2%		
TOTAL		< 15.2%		

	error	Uncertainty
Un-uniformity of detector gain	+/-1.2% of Ptot	9.0%
Energy scale	+/-2.5% of evis	12.0%
Ring counting		4.3%
Neutrino flux	21.5%	
flux absolute normalization	20%	20%
flavor ratios (En<5GeV,>5GeV)	3%, 3-10%	-, 0.1%
vbar/v ratio for ve (Ev<10GeV, >10GeV)	5%, 5-10%	0.9, -%
vbar/v ratio for vµ (Ev<10GeV, >10GeV)	5%, 5-10%	0.8, -%
Up/down ratio	0.4-2.1%	- %
Hor./vertical ratio	0.3-2.8% (3D calc.)	- %
K/π ratio	20.0%	5.2%
Energy spectrum	0.05 for Ep>100GeV	5.8%
Neutrino cross section	18%	
M _A in quasi-elastic and single-pi	10% in M _A	4.4%
Quasi elastic scattering (model dependence)	1σ = Fermi-gas vs. Oset	- %
Quasi elastic scattering (cross section)	10%	0.4%
single-pion production (cross section)	10%	2.8%
multi-pion production (model dependence)	$1\sigma = w/, vs. w/o Bodek$	15.5%
multi-pion production (cross section)	5%	3.4%
coherent pion production (cross section)	30%	0.1%
NC/(CC) ratio	20%	6.2%
Nuclear effect in 16O (mean free path)	30%	2.7%
TOTAL	32.1%	

Result

efficiency = $10.4\% \pm 1.6\%$ number of neutrons = 6.02×10^{-33} SK-I livetime = 4.077 years observed candidates = 20expected background = 21.31 ± 6.84 Bayesian statistics

Official Result 90% CL 1.77 x 10³² years

with R=3.6 x 10^{23} this corresponds to $\tau_{\rm free}$ = 1.25 x 10^8 seconds compared to .87 x 10^8 at Grenoble

Frequentist result = 2.45×10^{32} years

Frequentist result without systematics= 4.45 10 ³² years (as in previous experiments)

Bayes vs Frequentist

with no systematic errors we have ...

Frequentist
$$CL = 1 - e^{-(b+s)} \sum_{n=0}^{n_0} \frac{(b+s)^n}{n!}$$

s= signal limit b=expected background n=selected data events

Bayes
$$CL = 1 - \frac{e^{-(b+s)} \sum_{n=0}^{n_0} \frac{(b+s)^n}{n!}}{e^{-b} \sum_{n=0}^{n_0} \frac{(b)^n}{n!}}$$

Previous Results

Present Neutron-Antineutron transition limits

τ_{free} seconds

Experiment	Year	Exposure (10 ³² neutron- yr)	Efficiency	Data	BG	Signal Limit	Frequentist Limit no systematics (10 ³² yr)	Start point	Absorption cross section
SuperK I	2006	245	.104	20	21.3	5.7	4.45	Volume	Linear
Sudan II *	2002	2.15	.18	5	2.5	5.5	.72 (.84)*	Vol. (Dov.)	Linear
Frejus *	1990	5	.30	0	2.1	2.3	.65*	Volume	Linear
Kamiokande	1986	3	.33	0	1.2	2.3	.43	Dover	Linear
IMB	1983	3.2	.14	0	0	2.3	.17	Dover	Density ²

*Iron experiments have an additional suppression of ~1/.71 not included here (see slides 11 and 43)

Future

Future Results

- Predicted MC results for cuts resulting in different efficiencies.
- Frequentist result with systematic errors
- Upward fluctuations correspond to seeing one less event in the data.
- Future SK limit ~ 6x10³² years

Efficiency Correlations with "R"

Should absorption cross section scale like the nuclear density squared?

Absorption is a three body reaction, so IMB (1983) distributed the Oxygen-pion absorption cross section according to the nuclear density squared. No one has done this since then. Looks like it will result in a 5-10% improvement.

Conclusions

- Official Result τ=1.77x10³² years (Bayes, including systematic errors)
- Improvement of 4.4 times over previous measurement of τ_{nuclei} (When duplicating their procedure of using frequentist statistics without any systematic errors and R_0/R_{Fe} =.71)
- 44% better than Grenoble τ_{free} (Bayes, R=3.6x10²³)