SUPERALLOWED NUCLEAR BETA DECAY: RECENT RESULTS AND THEIR IMPACT ON V_{ud}

J.C. Hardy Cyclotron Institute Texas A&M University U.S.A.

(with I.S. Towner)

SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life = $t_{1/2}/BR$ $G_v =$ vector coupling constant < > = Fermi matrix element

SUPERALLOWED 0⁺ → 0⁺ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $f(Z, Q_{EC})$ t = partial half-life = $t_{1/2}/BR$ $G_v =$ vector coupling constant < > = Fermi matrix element

INCLUDING RADIATIVE CORRECTIONS

$$7t = ft(1 + '_{R})[1 - (_{C} - _{NS})] = \frac{K}{2G_{v}^{2}(1 + _{R})}$$

SUPERALLOWED $0^+ \rightarrow 0^+$ BETA DECAY

BASIC WEAK-DECAY EQUATION

$$ft = \frac{K}{G_v^2 < >^2}$$

f = statistical rate function: $\ddagger(Z, Q_{EC})$ t = partial half-life = $t_{1/2}/BR$ G_v = vector coupling constant < > = Fermi matrix element

INCLUDING RADIATIVE CORRECTIONS

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft (1 + i_R) [1 - (i_C - i_N)] = \frac{K}{2G_v^2 (1 + i_R)}$$

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft(1 + i_R)[1 - (i_C - i_Ns)] = \frac{K}{2G_V^2(1 + i_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

7*t* values constant

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft(1 + i_R)[1 - (i_C - i_Ns)] = \frac{K}{2G_V^2(1 + i_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

7*t* values constant

WITH CVC VERIFIED

Obtain precise value of $G_v^2(1 + R)$

Determine V²_{ud}

$$V_{ud}^{2} = G_{v}^{2}/G^{2}$$

FROM A SINGLE TRANSITION

Experimentally determine $G_v^2(1 + R)$

$$7t = ft(1 + i_R)[1 - (i_C - i_Ns)] = \frac{K}{2G_V^2(1 + i_R)}$$

FROM MANY TRANSITIONS

Test Conservation of the Vector current (CVC)

7*t* values constant

WITH CVC VERIFIED

Obtain precise value of $G_v^2(1 + R)$

Determine V²_{ud}

Test CKM unitarity

$$V_{ud}^{2} = G_{v}^{2}/G^{2}$$

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

 9 cases with *ft*-values measured to ~0.1% precision; 3 more cases with <0.4% precision.

 ~125 individual measurements with compatible precision

$$\mathcal{T}t = ft(1 + '_{R})[1 - (_{C} - _{NS})] = \frac{K}{2G_{V}^{2}(1 + _{R})}$$

- 9 cases with *ft*-values measured to ~0.1% precision; 3 more cases with <0.4% precision.
- ~125 individual measurements with compatible precision

$$\mathcal{T}t = ft(1 + i_{R})[1 - (i_{C} - i_{NS})] = \frac{K}{2G_{V}^{2}(1 + i_{R})}$$

with compatible precision

$$7t = ft(1 + '_{R})[1 - (_{C} - _{NS})] = \frac{K}{2G_{V}^{2}(1 + _{R})}$$

PRINCIPAL RESULTS FROM 0⁺→0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

PRINCIPAL RESULTS FROM 0⁺→ 0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

PRINCIPAL RESULTS FROM 0⁺→ 0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

PRINCIPAL RESULTS FROM 0⁺→0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

2) Scalar current zero

PRINCIPAL RESULTS FROM 0⁺→ 0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

2) Scalar current zero

PRINCIPAL RESULTS FROM 0⁺→ 0⁺ DECAY

1)
$$G_v$$
 constant $7t = \frac{K}{2G_v^2 (1 + R)}$ verified to ± 0.013%

2) Scalar current zero \checkmark limit, $C_s/C_v \le 0.0013$ (b_F = 0.0001(26))

PRINCIPAL RESULTS FROM 0⁺→0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

2) Scalar current zero \checkmark limit, $C_s/C_v \le 0.0013$ (b_F = 0.0001(26))

3) Precise value determined for V_{ud}

$$V_{ud} = G_{v/G}$$

PRINCIPAL RESULTS FROM 0⁺→0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

2) Scalar current zero \checkmark limit, $C_s/C_v \le 0.0013$ (b_F = 0.0001(26))

3) Precise value determined for V_{ud}

$$V_{ud} = \frac{G_v}{G}$$

$$V_{ud} = 0.9738 \pm 0.0004$$

PRINCIPAL RESULTS FROM 0⁺→ 0⁺ DECAY

1) G_v constant

$$7t = \frac{K}{2G_v^2(1 + R)}$$

✓ verified to ± 0.013%

2) Scalar current zero \checkmark limit, $C_s/C_v \le 0.0013$ (b_F = 0.0001(26))

3) Precise value determined for V_{ud}

$$V_{ud} = \frac{G_v}{G}$$

$$V_{ud} = 0.9738 \pm 0.0004$$

Compare: neutron $V_{ud} = 0.9745 \pm 0.0018$ pion $V_{ud} = 0.9751 \pm 0.0027$

• Goal is to tighten the window for new physics by reducing the uncertainty on V_{ud}.

• Goal is to tighten the window for new physics by reducing the uncertainty on V_{ud}.

- Goal is to tighten the window for new physics by reducing the uncertainty on V_{ud}.
- Uncertainty on calculated radiative correction _R reduced.

Marciano & Sirlin PRL 96, 032002 (2006)

- Goal is to tighten the window for new physics by reducing the uncertainty on V_{ud}.
- Uncertainty on calculated radiative correction _R reduced.

Marciano & Sirlin PRL 96, 032002 (2006)

• Nuclear-structure-dependent corrections, c and NS, being tested by experiment.

- Goal is to tighten the window for new physics by reducing the uncertainty on V_{ud}.
- Uncertainty on calculated radiative correction _R reduced.

Marciano & Sirlin PRL 96, 032002 (2006)

• Nuclear-structure-dependent corrections, c and NS, being tested by experiment.

Well known cases being improved and new cases explored.

Strategy is to probe the nucleus-to-nucleus variation in $_{\rm c}$ - $_{\rm NS}$ -

Increase measured precision on nine best *ft*-values

Strategy is to probe the nucleus-to-nucleus variation in $_{\rm c}$ - $_{\rm NS}$.

Increase measured precision on nine best *ft*-values

measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)

Increase measured precision on nine best *ft*-values

measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)

measure new $0^+ \rightarrow 0^+$ decays with A \geq 62 (T_z = 0)

Increase measured precision on nine best *ft*-values

measure new $0^+ \rightarrow 0^+$ decays with $18 \le A \le 42$ (T_z = -1)

measure new $0^+ \rightarrow 0^+$ decays with A \geq 62 (T_z = 0)

RECENT OR CURRENT EXPERIMENTS

Q_{EC} values: **Argonne (Canadian Penning trap)** ⁴⁶V Savard *et al.*, PRL 95, 102501 (2005) ¹⁰C, ¹⁴O, ²⁶AI^m, ³⁴CI, ⁴²Sc Jyvaskyla (JYFLTRAP) ⁶²Ga Eronen *et al.* PLB 636, 191 (2006) ²⁶AI^m, ⁴²Sc, ⁴⁶V Eronen *et al.*, PRL 97, 232501 (2006) ⁵⁰Mn,⁵⁴Co **NSCL (LEBIT)** ³⁸Ca Bollen et al., PRL 96, 152501 (2006) **Munich Tandem** ⁴⁶V Faestermann *et al.*, Progress Report **ISOLTRAP**

³⁸Ca George *et al.,* PRL 98, 162501 (2007)

Half-lives:

Branching ratios: TRIUMF ⁶²Ga Hyland *et al.*, PRL 97, 102501 (2006) Texas A&M ¹⁴O Towner & Hardy, PRC 72, 055501 (2005) ³⁴Ar, ³⁸Ca

METHODS USED FOR PRECISION MEASUREMENTS OF Q_{EC}

• B(p,n)A threshold: p energy referred to standard volt.

Auckland: e.g. Phys. Rev. **C58** (1998) 821.

• C(p,)A and C(n,), Q value difference: p energy calibrated to known (p,).

±100-200 eV

±120 eV

Oak Ridge/Utrecht: e.g. Nucl. Phys. **A529** (1991) 39.

• B(³He,t)A and B'(³He,t)A', Q_{EC} doublet: difference measured with voltmeter.

±130-200 eV

Chalk River: e.g. Nucl. Phys. **A472** (1987) 419.

• Separate mass measurements of A and B: measured with on-line Penning trap.

±50-400 eV

e.g. Argonne (CPT): Phys. Rev. Lett. **95** 102501 (2005).

METHODS USED FOR PRECISION MEASUREMENTS OF Q_{EC}

• B(p,n)A threshold: p energy referred to standard volt.

p,

С

e.g. Nucl. Phys. **A472** (1987) 419.

Separate mass measurements of A and B: measured with on-line Penning trap.

±50-400 eV

e.g. Argonne (CPT): Phys. Rev. Lett. **95** 102501 (2005)

DETECTOR EFFICIENCY 50 keV < E < 1.4 MeV

Source measurements

Energy (keV)

DETECTOR EFFICIENCY 50 keV < E < 1.4 MeV

■ ¹⁰⁹Cd

♦^{108m}Ag

● ^{120m}Sb

O¹³⁴Cs

■ ¹³⁷Cs

♦⁴⁸Cr

● ¹³³Ba

∆^{180m}Hf

A88Y

Source measurements

VS ● ⁶⁰Co **unscaled Monte Carlo** calculations (CYLTRAN)

Physical properties and location of HPGe crystal measured precisely 10 sources recorded

4 key sources, 3 locally made, have pure cascades ⁶⁰Co source from PTB with activity known to+ 0.1%

DETECTOR EFFICIENCY 50 keV < E < 1.4 MeV

● ⁶⁰Co

■ ¹⁰⁹Cd

0¹³⁴Cs

■ ¹³⁷Cs

♦⁴⁸Cr

● ¹³³Ba

∆⁸⁸Y

Source measurements

VS **unscaled Monte Carlo** calculations (CYLTRAN)

Physical properties and location of HPGe crystal measured precisely 10 sources recorded

4 key sources, 3 locally made, have pure cascades ⁶⁰Co source from PTB with activity known to+ 0.1%

Difference (%) ♦^{108m}Ag ● ^{120m}Sb 2 ė ġ 9 20 2000 ŝ 200 000 300 50 200 000 00 ∆^{180m}Hf Energy (keV) 137**CS** ¹³⁷Cs ¹³³Ba ¹⁰⁹Cd ¹³⁴Cs 48**Cr** <u>ي</u> Difference (%) ^{120m}Sb ^{108m}Ag ^{120m}Sb ^{180m}Hf 88Y 60 Co 88 Y .**A**. Τ ି Energy (keV) 20 30 40 50 8 ġ 500 800 <u>Ö</u> 2000 400 600

 $\frac{\mathbf{N}_{0}\mathbf{K}_{1}}{\mathbf{M}}$

2005 Review: *V_{ud}* = 0.97380(40)

Most of the reduction in the uncertainty on V_{ud} since 2005 comes from the improvement in the calculated radiative correction $_{R}$.

NEUTRON BETA DECAY

NEUTRON DECAY DATA, 2006

NEUTRON DECAY DATA, 2006

G[']_A, **G**[']_V FROM NEUTRON & NUCLEAR DECAY DATA

PION BETA DECAY

PION BETA DECAY

CONTRIBUTIONS TO Vud UNCERTAINTY

CONTRIBUTIONS TO V_{ud} UNCERTAINTY

SUMMARY

- 1. The 2005 superallowed -decay survey yielded tight limits on new physics: CVC verified to 0.026%; $|C_s/C_v| < 0.0013$.
- 2. In the past two years, the nuclear result for V_{ud} has been considerably improved by both theory and experiment.
- 3. Neutron and pion decays still yield much less precise values for V_{ud}, limited by experimental uncertainties.
- 4. The superallowed decay result for V_{ud} has been stable (with decreasing uncertainties) for decades.
- 5. Much nuclear activity is now focused on reducing V_{ud} uncertainty *via* tests of structure-dependent correction terms.
- 6. With one possible exception, nuclear results continue to support calculated structure-dependent correction terms.
- 7. CKM unitarity now verified to 0.1%. Uncertainty dominated by V_{us} , but V_{ud} will no doubt become critical again.
- 8. The value of V_{ud} can be improved further.