Laser-trapped Ra-225 for an Argonne electric dipole moment search

J. R. Guest, N. D. Scielzo, I. Ahmad, K. Bailey, J. P. Greene, R. J. Holt, Z.-T. Lu, T. P. O'Connor, D. H. Potterveld, J. W. Wang

March 20th, 2007 INT EDM and CP violation workshop, U. of Washington

Department of Energy, Office of Science, Nuclear physics

electric dipole moment search

Laser-trapped Ra-225

Outline

NATIONAL LABORATORY

12

Mg

24.31

²⁰ Ca

40.08

38

Sr

87 62

56

Ba

137.33

88

Ra (226)

- Hg-199
- Enhancement due to octupole deformation
- Ra-225 and our scheme
- Radium atomic structure
- Laser-trapped radium!
- Blackbody-assisted repumping?
- Expected systematics and noise
- Plans

EDM Measurement

Single atom measured over single coherence time τ :

 $\delta d \approx \frac{\sqrt{2h}}{2}$

N atoms measured over time T with efficiency ϵ :

 $\frac{h}{4\pi E \sqrt{\tau NT \varepsilon}}$ $\delta d \approx -$

The Seattle ¹⁹⁹Hg EDM Experiment

M. V. Romalis, W. C. Griffith, J. P. Jacobs and E. N. Fortson Phys. Rev. Lett. 86, 2505 (2001)

T-violating interaction -> atomic EDM

Nuclear charge is screened from applied electric fields by electrons.

But, if dipole moment distribution is different than charge distribution, and there is a gradient in the electronic wavefunction, then the atomic EDM is proportional to the nuclear *Schiff moment*:

a 'radially-weighted dipole moment' (PCP)

V.A. Dzuba et al., PRA 66, 012111 (2002)

Density distributions of the radium isotopes

Contours of constant density for series of even-N radium (Z-88) isotopes

J. Engel et al., PRC 68, 025501 (2003)

T-violating interaction -> atomic EDM

Nuclear charge is screened from applied electric fields by electrons.

But, if dipole moment distribution is different than charge distribution, and there is a gradient in the electronic wavefunction, then the atomic EDM is proportional to the nuclear Schiff moment:

Enhancement due to octupole deformation

With no correlation between spin and intrinsic deformation:

$$\left< \Psi^{+} \left| \mathbf{S}_{\text{int}} \right| \Psi^{+} \right> = 0$$

But, with a T-, P-odd interaction V_{PT} :

$$\Psi = \Psi^{+} + \alpha \Psi^{-}$$
$$\alpha = \frac{\left\langle \Psi^{+} \left| V_{PT} \right| \Psi^{-} \right\rangle}{\Delta E}$$

So, in the lab frame we see:

$$\langle S_z \rangle = 2\alpha S_{\text{int}} \frac{I}{I+1}$$

Enhancement: EDM(225Ra) / EDM(199Hg)ModelIsoscalarIsovectorIsotensorSkM*15009001500SkO'450240600

PRL 94 232502 (2005), PRC 72 045503 (2005)

Ra-225: Spin I = 1/2 (like Hg-199) t_{1/2} = 15 days

Haxton and Henley; Auerbach, Flambaum & Spevak; Dobaczewski, de Jesus & Engel

EDM measurement on Ra-225

EDM measurement on Ra-225

EDM measurement on Ra-225

With enhancement competitive with Hg-199

Ra-225 atomic beam

Repump spectrum

Repump spectrum

Repump spectrum

Where we are and where we're going ...

EDM measurement

Stable current supply for applied B field (need <3ppm over 300s)

Systematics and noise

Largest systematics arise from magnetic fields which change with direction of applied electric field

Leakage current between plates could run in loop causing a magnetic field ${\bf B}_{\text{leak}}$ which changed direction with ${\bf E}$

Motional magnetic field $B_{mot} = 1/c^2 v \times E$ changes direction with E

Electric quadrupole terms $H \sim |E|^2$ may lead to systematic with incomplete field reversal (0 for spin-1/2)

Geometric phase small due to small trap size, velocity

Collisions? Low density, Cold spin-polarized fermions

Possible dipole trap systematics and noise

Systematics:

COM Potentials? $|E_{HV}|^2 \sim 100 \times |E_D|^2$

Possible dipole trap systematics and noise

Systematics:

COM Potentials? $|E_{HV}|^2 \sim 100 \times |E_D|^2$

E-field mixes opposite parity states, can cause magnetic dipole shifts

Noise, coherence limiting mechanisms:

Residual circular polarization of dipole laser provide a vector light shift, linear in m (no tensor shift I=1/2)

Use trans lin pol, lattice

M. V. Romalis and E. N. Fortson, PRA **59**, 4547 (1999)

C. Chin et al., PRA 63, 033401 (2001)

Where we are and where we're going ...

