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Pracise measuremantson the light from distant quasars suggest thatthe value
of the fine-structure constant may have changed averthe history of the universe.
If confirmed, the resultswill b2 of enormous significance for the foundations of physics

Are the laws of nature
changing with time?
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2 What is the fine-structure constant?

Have the lzws of nature remaned the
same smce the Big Bang acme 15.5 bal-
hen vears age? Paul Thme firse posed
this question in 1957, and he was sull
interested i this dea when he visied
the Unnersity of Mew South Wales
(UMSEW) i Sydney in 1975 — where |
am now based. Dirac attempted to nk
the strength of grovate which descnbes
the large-scale properges of the un-
verss, with the vanous constants and
numbers that chamctenze the amall-
scale properties of the umiverse In
doing so. he caimed that one of the
corstants of nature, the swength of
grmaty; should change with orme.
Although chservations mabsequently
ruled cut Dhmc’s ideas, advances n
many areas of phyaics and aseronomy
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Introduction — time varying constants
History of Oklo natural nuclear reactors
Realistic modeling of Oklo reactor zones
Calculations of 9Sm effective cross section
Bounds on Aa/a from RZ2 and RZ10
Conclusions



Time variation of fundamental
constants

* Long history (Dirac: Gy, ~1/t)

» Feature of extra dimensional theories
(Uzan, RMP 03)

* Only dimensionless ratios have meaning
(ag ~Gymy,/ hc, W~mJAqgcp, ms/m,)

« Among the most studied is the fine
structure constant «a,,~e?*/hc ~ 1/137

e If a,,, does vary, it's a matter of taste
whether to ascribe it to e, h or ¢



Detect a change in h from two slit
interference with electrons?
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Look for a change in the diffraction
pattern as a function of time

From p = h/A and ®= A/d, so ®= h/(pd)
Expect: @~ h

But wait, d depends on h too:
Bohr radius a, ~ h?, so with d = N a,
Expect ®~ 1/h

But wait again, p depends on h also
Energy ~ p° ~e (Q/area) z, sop ~ 1/h

Result: ® doesn’t depend on h at all (OK, it shouldn’t, it’s
dimensionless)



Does o vary with time - Quasars

Observations of absorption lines in the spectra
of distant quasars (z > 0.5)- model independent
probe of times ~ 10 BY.

Webb et al (01): o increased by ~ 1x10° (5¢
effect)

Srianand et al (04): no change, or (Murphy et al
(06) reanalysis), 3o effect increase

Mathews et al (05): change due to Mg isotope
abundance differences?



Quasar absorption lines (Webb et al)

1 Simulated quasar absorption spectrum
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Many multiplet method (Webb et al)

2 How spectral lines shift
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Does o vary with time - Oklo

e 99Sm resonance at 97.3 meV- has its
energy changed over 2 BY?

* No, from early analyses of Sm abundance
data for RZ2- Shlyakhter (76), Petrov (77),
Damour and Dyson (96)

« But recent data for RZ10 are contradictory
- Fuji et al (00), Lamoreaux and Torgerson
(04), Petrov et al (05)



Aa/o over 2 BY from Oklo RZ2 and RZ10 analyses
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Oklo Natural Nuclear Reactors
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Discovery of Oklo phenomon

« 1972 French technician analyzes UF, samples and gets
235(J fraction of 0.7171% instead of expected 0.7202%

e Alarm bells — 700 tons of U processed (~100 kg 23°U
missing: diversion of ore? secret nuclear explosion?)

» Traced to Oklo ores — find 235U depleted to as low as

0.64%, plus anomalous amounts of other isotopes (NA,
Sm, Gd)



Sm(Z=62) % isotope abundances
for ‘144’ : ‘147° > 148’ : ‘149’

Natural abundance 3.1:15.1:11.3:13.9

235(J fission products 0.0:61.3:0.0 :29.4

Oklo ore (RZ10) 0.1:55.3:2.8 :0.5




Unique time window for a natural
reactor two billion years ago

Need 235U, oxygen, and water

e 2BY ago 235/238 = 3.7%, OK for light water
moderation.

o [ater than 2 BY ago, not enough 43°U

« Earlier than 2 BY, not enough oxygen to create
soluble U oxides (need life).



Reactor zone 2 (open mine site)

Photo courtesy of Andreas Mittler



One of the Oklo Fossil Reactors
exposed by mining operations
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Reactor Zone 15 accessed thru a
tunnel from the main si

Uranium oxide remains visible as yellowish rock. Robert D. Loss



Reactor zones 2 and 10

Natural nuclear reactors operated 2 BY ago at a
depth of a few km when 235U fraction was 3.7% -
similar conditions to today’s PWR’s (T= 300 deg

C, pressure ~ 20 atm)

RZ2 burned 1800 kg 23°U over 0.85 MY
RZ10 burned 650 kg 23°U over 0.16 MY

Reactor power - 10-15 kW
Operation cycled 2 hr on, few hrs off



Nd and Sm abundances (ppm), and % U for
RZ10 (Hidaka and Holliger) define reactor zone
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Sm % isotopic abundance data for RZ10
samples — reactor zone 14.69m to 14.92m
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Define a “meta” sample as the average of the RZ samples



Burn up of %°Sm due to n capture

o

Overlaéa Oklo neutron flux ™ thermal Breit Wigner
with #9Sm 97.3 meV - neutron resonance
resonance capture cross ingggu}r(n

section a(n, ).

If resonance shifts up,
capture yield goes down,
and vice versa.

Use relative yields of Sm
and U nuclides in ores to
bound shift in resonance
AE, .

Reaction rate R=®0o, but
how well known is the
neutron flux @?

\\\\\\\\\\\
-------------



Characterizing the neutron flux

Neutron flux ®=
“Maxwell-Boltzmann at
unknown T” +
“Unknown fraction of
epithermals (1/E)
characterized by r ”

Q: how to choose r and
temperature?

A: match r to measured
spectral indices, and
analyze a range of T
20 - 500 C.

Flux*E

} RZ10 and Westcott fluxes at T=20,r=0.001,0.01, . , . \

101

102

103

1%4 I | I | I | I | I | 1
.001 0.01 0.1 1 10 100 1000
NEUTRON ENERGY (eV)



Analysis of Oklo isotopic abundances show
r is not zero

Isotopic abundances depend on reaction rate: R = @ _; o4
« Effective flux @ 4=n v,
« Effective cross section o, =(1/nv,) | a(v) n(v) v dv

* Rewrite as a function of thermal cross section c,and r:
Example: o+ ("*Nd) = 335 -100 r

From "3Nd, 77Sm, 235U geochemical data (Naudet, HH)
RZ2: r=0.20-0.25
RZ10: r=0.15% 0.02

Use r values to select realistic models of the reactor zones,
and then calculate the implications for #°Sm burn up.




Reactor zone modeled by a flat cylinder
surrounded by water saturated sandstone

Most uncertain parameter
in Oklo modeling is the
water to uranium ratio.

Find RZ10: H/U = 13.0
(very little UO,) and RZ2:

H/U=7.6 i —

Metal oxides (Fe, Al, Mg, 0.7m
Mn, K) contribute to both
thermalization and

absorption - important to -
making RZ10 critical 6m

Finite size rg_actor _cannot
be made critical with only
water and uranium




Flux times energy (arb. units)
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Confirming epithermal indices are correct

Confirm r values four ways

1) Integrate MCNP densities up to and above 5kT

2) Compare MCNRP flux per unit lethargy at ~100 eV to
integrated thermal flux (Naudet)

3) Reactor theory: r ~ X, ./ 2, (Westcott)
4) From A =2A%,, /5.~ (4/vx) r (Weinberg-Wigner)

All methods agree OK, and match well to expt’l| values

RZ2: 0.22
RZ10: 0.15



Calculate "Sm o, as a function of
resonance shift usmg MCNRP fluxes

Include resonances up to
50 eV, and sub-threshold
resonance at -285 meV

Shift all resonances:
-0.2eV <A4E,<+0.2eV

Numerically evaluate
using SPEAKEASY

Incorporate Doppler
broadening (negligible)

97.3 meV resonance
contributes 98%

149Sm Rz2(dotted) and RZ10(solid)
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Thermal only
calculations agree
with previous work
(Fujii, Damour)
“Thermal” and
‘realistic” o (1*°Sm)
are different (Petrov,
(Lamoreaux): 1/E
spectrum moves
curve to left

Need ancient o4 to
derive a possible
enerqgy shift over time

Cross section (kb)

P200

MB200, MCN
©

Maxwell Boltzmann predictions compared to

thermal

Energy shift (eV)



New calculation of ancient o ('*9Sm) , explicitly

including Pu decay, and Pu restitution thru “p”
dNs Ac
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Solve equations to match
geochemical data

o Step 1: with p, duration, and start time fixed, solve U and
Pu equations for flux, given starting and ending 23°U
fractions

o Step 2: with fluence fixed, solve for starting Sm:U ratio

given ending #"Sm fraction (check agreement with
144Sm)

« Step 3: with Sm:U ratio fixed , solve for o,,9 given ending
149Sm fraction.



Results for RZ2 and RZ10 agree

with previous work

o Using meta sample
values and sample
Standard deviations:

RZ2:
G0=71.5% 10.0 kb
(Damour: 57 < o < 93 kb)

RZ10:

o0 =85.0 £ 6.8 kb
(Fuji: 91.2 + 7.6 kb)

RZ2 |o(kb) |RZ10 | o (kb)
1408 |69 1469 | 94
1410 |78 1480 | 86
1413 |65 |1485 |81.5
1416 | 91 1492 | 96
1418 |75

Meta |71.5 |Meta | 85




Results for "°Sm energy shift

130 ——————1—————7———— .
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temperature range
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Coulomb energy difference sets
scale for sensitivity to change in o

E. = 0.4x72/43 MeV Q Q 14gsm +n
AE, = E.(149) - E(150) ~ 1.1 MeV

do/oa~ - AE./AE,

AE, is of order meV’s, therefore 10° 150Sm*
magnification in sensitivity

If a decreases, the resonance shifts up



Results for Aa/a

* Right branch solution
consistent with zero, gives

-0.24 x107 < Aavex <0.11
x107

e [eft branch non-zero —
unfavored by Fuji Gd
analysis, but not yet
definitively ruled out




Comparison of Aa/afrom RZ10 analyses
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Current Limits on d/dt(Aa/cx)

 Okloover 2BY < 1.2 x 107" per year

e Quasars over 10 BY ~ 6 x 10°7° per year

o Afomic clocks (Hg, Cs, Yb) over ~1Y
<1x 107 per year



Maybe Oklo bound is meaningless
(or too model dependent)?

e Marciano, Flambaum... argue sensitivity of hadronic
properties to strong interaction is much more important —
therefore Oklo data aren’t useful in bounding o,

Defining W ~ Mg, n0e /Aqcep, (Flambaum and Shuryak)
AE . = 100MeV AW/ W) + 1MeV (Ada/xx)

In this case, Oklo limit d/dt(AW/ W) < 1.2 x 1079 per year



Conclusions

Oklo data lead to very tight (albeit model dependent)
constraints on the time variation of a over 2 billion years —
factors of 10 or more precise than quasar data analysis or
laboratory experiments.

Discrepancies between recent RZ10 results are due to
different assumptions about the epithermal neutron
fraction present; matching to known spectral indices leads
to realistic models of the reactor zones.

New results are consistent with no change in «, but also a
non-zero shift cannot yet be ruled out.

Would be useful to get additional constraints on the
possible reactor zone temperatures (Lu resonance data?)
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