Lessons Learned from Studies of CP Violation in the B-Meson System

Susan Gardner

Department of Physics and Astronomy University of Kentucky Lexington, KY 40506

gardner@pa.uky.edu

What is the mechanism of CP violation in Nature? A status report.

CP Violation in the SM

 \implies There is one CP-violating parameter in the CKM matrix.

Why do we think there could be CP violation beyond the SM?

The Case of the Missing Anti-Matter

• How can we test the CKM mechanism of CP violation?

 \Longrightarrow Enter "the" Unitarity Triangle.

- How do we study CP violation in the B system?
- What do we now know about the mechanism of CP violation?
- **How well can we test the CKM mechanism of CP violation?**

The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The decay $\mathcal{K}^+ \to \mu^+ \bar{\nu}_\mu$ occurs: the quark mass eigenstates *mix* under the weak interactions. By convention

$$
\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{weak} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{mass} \hspace{5mm}; \hspace{5mm} V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

In the Wolfenstein parametrization (1983)

$$
V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

where $\lambda \equiv |V_{\mu s}| \simeq 0.22$ and is thus "small". A, ρ , η are real. All CP-violating phenomena are encoded in η .

To test the SM picture of CP violation we must test the relationships it entails.

Why B-Meson Decay?

Studies of *b*-quark decay allows us to probe $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0.$ — a relationship predicated by the unitarity of the CKM matrix. All terms are $\mathcal{O}(\lambda^3)$. Enter "the" unitarity triangle...

Testing the Standard Model of CP Violation

Different CP-violating phenomena exist (or are believed to exist) in the B meson system

- **CP** violation in the interference of $B \bar{B}$ mixing and direct decay
- CP violation in direct decay

Note $\vert B^0(\tau)\rangle...$ a state which is "tagged" as a B^0 meson at proper time $\tau = 0$ has a finite probability of being \bar{B} at proper time τ .

Enter the asymmetric B-factory, to facilitate the study of the time-dependence of CP violation.

There are asymmetric B-factories at SLAC and KEK.

Strong Interaction Obfuscation

Want to learn about underlying CKM parameters, but strong-interaction dynamics can confound this goal. Consider

$$
\mathcal{A}_{\textit{direct}} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2}
$$

 $A:\; M \to h_1 h_2$ and $\bar{A}:\; \bar{M} \to \bar{h}_1 \bar{h}_2$ An interference effect...

$$
A = A_1 + A_2 \equiv A_1 [1 + re^{i\delta} e^{i\phi}]
$$

\n
$$
\bar{A} = \bar{A}_1 + \bar{A}_2 \equiv \bar{A}_1 [1 + re^{i\delta} e^{-i\phi}]
$$

\nso that $A_{direct} = \frac{-2r \sin \delta \sin \phi}{1 + 2r \cos \delta \cos \phi + r^2}$

 $\mathcal{A}_{\text{direct}}$ determines a combination of r, δ, ϕ . Note δ strong phase, ϕ weak phase. Flavor symmetries (SU(2), SU(3)) can be used to relate *r* and δ of various decays in an approximate way. Precision studies ultimately demand better?

Studying direct CP violation in the B-meson system

Direct CP violation can be studied in a variety of ways:

- $\mathsf{Partial\ rate\ asymptinspace asymptr}: |A(B \to h_1 h_2)|^2 |A(\bar{B} \to \bar{h}_1 \bar{h}_2)|^2 \neq 0$
- $``\epsilon'$ in the B system": cf. $B(t)\to \psi K_S$ and $B(t)\to \pi^+\pi^-$ [wolfenstein, 1984] $\mathsf{\Gamma}(B^0(t) \to f_{\mathcal{CP}}) \propto$ $e^{-\Gamma t} \left[\frac{1+|\lambda_{f_{CP}}|^2}{2} + \frac{1-|\lambda_{f_{CP}}|^2}{2} \right]$ $\frac{\left|\lambda_{f_{CP}}\right|^2}{2}\cos(\Delta m\,t)-\mathrm{Im}\lambda_{f_{CP}}\sin(\Delta m\,t)\right]$ where $\lambda_{f_{CP}} \equiv \eta_{f_{CP}}(q/p)(A(\bar{B} \rightarrow f_{CP})/A(B \rightarrow f_{CP})).$ Note $-\lambda_{\psi}K_{\!S}}\neq\lambda_{\pi^+\pi^-}$ implicitly signals direct CP violation.
- Angular distribution in $B \to V_1 V_2$ [Sinha & Sinha, 1998]
- $\mathsf{Population}~ \text{asymmetry in}~ |\mathcal{A}(B\rightarrow f_{CP})|^2+|\mathcal{A}(\bar{B}\rightarrow f_{CP})|^2~[\text{sc},\text{2003};\text{sc}~\text{s}]$ Tandean, 2004]

Direct CP violation in the B-meson system established through the partial-rate asymmetry in the "self-tagged" $\mathsf{modes}\; B(\bar B) \to K^\pm \pi^\mp.$

An Illustration: B, $\bar{B} \rightarrow \pi^+ \pi^- \pi^0$ *Decay*

The failure of mirror symmetry in the Dalitz plot of the untagged decay rate signals the presence of direct CP violation.

Time-Dependent Studies to CP-Eigenstates

$$
\Gamma(B^0(t) \to f_{CP}) \propto
$$
\ne^{- Γt} $\left[\frac{1+|\lambda_{f_{CP}}|^2}{2} + \frac{1-|\lambda_{f_{CP}}|^2}{2} \cos(\Delta m t) - \text{Im}\lambda_{f_{CP}} \sin(\Delta m t) \right]$
\nwhere $\lambda_{f_{CP}} \equiv \eta_{f_{CP}}(q/p)(A(\bar{B} \to \bar{f}_{CP})/A(B \to f_{CP}))$.
\nIf the decay amplitude can be characterized by an unique weak phase,
\nthe strong dynamics cancels entirely!
\nEnter the "golden" mode $B \to \psi K_S...$ Im $\lambda_{\psi K_S}$ measures sin(2 β).

Note
$$
\sin(2\beta) = 0.675 \pm 0.026
$$
 (WA) from ψK_S and related modes.

sin(2β) *from Penguin Modes*

The penguin modes $B \to \phi K_S,\, B \to \eta' K_S,\, B \to f_0 K_S,\, {\rm etc.}$ also measure $sin(2\beta)$ in the SM. [Grossman, Worah (1996)] Many possible modes exist.

N.B. the SM corrections to the $sin(2\beta)$ measurement are not uniformly small.

 H owever, $S(\phi K_S) - S(\psi K_S) = 0.02 \pm 0.01$.

sin(2β) *from Penguin Modes*

 \sim off.

Naive average yields $sin(2\beta) = 0.52 \pm 0.05$ (HFAG)– a deviation of 2.6 σ ! (cf. M. Neubert, Moriond-EW Mar 07, 0.50 \pm 0.06) Discounting differences as statistical fluctuations yields a "global" value of $sin(2\beta) = 0.647 \pm 0.024$

 \sim $\frac{1}{2}$

The possibility of non-SM CP violation is gradually being relegated to a smaller and smaller role.

Nevertheless, intriguing discrepanies remain, of which sin(2β) from tree and penguin modes is one.

Testing the CKM paradigm, 2006

Can also compare combined average $sin(2\beta) = 0.647 \pm 0.024$ with the value deduced from $|V_{\mu b}|$ and $|V_{\tau d}|$ alone, to yield $\sin(2\beta) = 0.794 \pm 0.045$, for a deviation of 2.9 σ . [M. Neubert, Moriond EW Mar 07] Can be used to set limits on new physics in $B_d - \bar{B}_d$ mixing.

New Physics in B[∂] − *B*[∂] *Mixing*

Can CP-Violating Observables in the B-Meson System Yield CKM parameters at the $\mathcal{O}(1\%)$ Level?

This is less daunting than it may seem.

Consider, e.g., $A_{\text{CP}}(t)$ in $B(\overline{B}) \to J/\psi K_S$. The $b \to s \mu \overline{\mu}$ "pollution" is suppressed by $\mathcal{O}(\lambda^2)$ and by loop effects.

This yields $sin(2\beta)$ <code>up</code> to an (estimated) correction of $-(2\pm2)\cdot10^{-4}$, [Boos, Mannel, Reuter, 2004] which can be tested with $B_s \to J/\psi K_s$ data. [Fleischer, 1999]

Flavor symmetries can also be used to probe CKM angles.

Here we consider the use of isospin symmetry to determine α from $B \to \pi\pi$ ($n\pi$) decay. Our goal is to assess all isospin-breaking effects.

Trees and Penguins in $b \rightarrow dq\overline{q}$ (*B* $\rightarrow \pi\pi$, *etc.*)

The CKM angle α (or γ) can be determined under an assumption of isospin symmetry from the analysis of $B \to \pi\pi$ [Gronau, London, 1990], $B \to \rho\pi$ [Snyder, Quinn, 1993], and $B \rightarrow \rho \rho$ modes.

Here we focus on $B \to \pi \pi$. $\mathcal{A}_{\mathrm{CP}}(t)$ in $\mathcal{B}(\overline B) \to \pi^-\pi^+$ decay yields sin(2 α_{eff}).

In the Standard Model $\alpha = \pi - \beta - \gamma$; $\gamma \leftrightarrow$ tree-level decay. Penguins make $\Delta \alpha = \alpha_{\text{eff}} - \alpha \neq 0$. Under isospin, two pions have $I=0,2$ only; $B\to\pi\pi$ amplitude $A_I.$

$$
A_{B^0\to \pi^+\pi^-} \equiv A_0 + \frac{1}{\sqrt{2}}A_2\;,\;\; A_{B^0\to \pi^0\pi^0} \equiv A_0 - \sqrt{2}A_2\;,\;\; A_{B^+\to \pi^+\pi^0} \equiv \frac{3}{2}A_2\;,
$$

QCD penguins yield $I = 0$ only \implies must separate out A_0/A_2 (& A_0/A_2). Can do so with $\mathcal{B}(B(\overline{B}) \to \pi^i \pi^j)$ data.

[SG, 2005]

$$
\Delta \alpha = \frac{1}{2} (\bar{\phi}' - \phi') + \frac{1}{2} (\bar{\zeta} - \zeta) + \frac{1}{2} [(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')] ,
$$

Last term vanishes if ξ and $\bar{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\text{OCD}}/m_b)$:

$$
\delta(\Delta \alpha) = 1.2^{\circ} [\xi] + 1.5^{\circ} [P_{ew}] + 1.1^{\circ} [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^{\circ},
$$

$$
\sigma_{\alpha}^{\mathrm{IB}}=0.4^{\circ}\left[\xi\right]+~0.3^{\circ}\left[\textit{P}_{\textit{ew}}\right]+0.2^{\circ}\left[\textit{P}_{\pi^{0}-\eta,\eta^{\prime}}\right]+1.1^{\circ}\left[\text{bound}\right]+\cdots\approx2^{\circ}\,,
$$

There is no central limit theorem for theoretical error.

What has been omitted?!

[SG, 2005]

$$
\Delta \alpha = \frac{1}{2} (\bar{\phi}' - \phi') + \frac{1}{2} (\bar{\zeta} - \zeta) + \frac{1}{2} [(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')] ,
$$

Last term vanishes if ξ and $\bar{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\text{OCD}}/m_b)$:

$$
\delta(\Delta \alpha) = 1.2^{\circ} [\xi] + 1.5^{\circ} [P_{\text{ew}}] + 1.1^{\circ} [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^{\circ},
$$

$$
\sigma_{\alpha}^{\mathrm{IB}}=0.4^{\circ}\left[\xi\right]+~0.3^{\circ}\left[\textit{P}_{\textit{ew}}\right]+0.2^{\circ}\left[\textit{P}_{\pi^0-\eta,\eta'}\right]+1.1^{\circ}\left[\text{bound}\right]+\cdots\approx2^{\circ}\,,
$$

There is no central limit theorem for theoretical error.

What has been omitted?!

[SG, 2005]

$$
\Delta \alpha = \frac{1}{2} (\bar{\phi}' - \phi') + \frac{1}{2} (\bar{\zeta} - \zeta) + \frac{1}{2} [(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')] ,
$$

Last term vanishes if ξ and $\bar{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\text{OCD}}/m_b)$:

$$
\delta(\Delta \alpha) = 1.2^{\circ} [\xi] + 1.5^{\circ} [P_{\text{ew}}] + 1.1^{\circ} [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^{\circ},
$$

$$
\sigma_{\alpha}^{\mathrm{IB}}=0.4^{\circ}\left[\xi\right]+~0.3^{\circ}\left[\textit{P}_{\textit{ew}}\right]+0.2^{\circ}\left[\textit{P}_{\pi^0-\eta,\eta'}\right]+1.1^{\circ}\left[\text{bound}\right]+\cdots\approx2^{\circ}\,,
$$

There is no central limit theorem for theoretical error.

What has been omitted?!

[SG, 2005]

$$
\Delta \alpha = \frac{1}{2} (\bar{\phi}' - \phi') + \frac{1}{2} (\bar{\zeta} - \zeta) + \frac{1}{2} [(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')] ,
$$

Last term vanishes if ξ and $\bar{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\text{OCD}}/m_b)$:

$$
\delta(\Delta \alpha) = 1.2^{\circ} [\xi] + 1.5^{\circ} [P_{\text{ew}}] + 1.1^{\circ} [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^{\circ},
$$

$$
\sigma_{\alpha}^{\mathrm{IB}}=0.4^{\circ}\left[\xi\right]+~0.3^{\circ}\left[\textit{P}_{\textit{ew}}\right]+0.2^{\circ}\left[\textit{P}_{\pi^0-\eta,\eta'}\right]+1.1^{\circ}\left[\text{bound}\right]+\cdots\approx2^{\circ}\,,
$$

There is no central limit theorem for theoretical error.

What has been omitted?!

Isospin Breaking in B → ππ*: Tests and Cross Checks*

Detailed numbers can change as data is updated. Have used CP-averaged branching ratios throughout.

- How does the analysis rely on QCD factorization framework? Relies on factorization formula; also follows from SCET in leading power. Scalar penguins do not appear. O(ΛQCD/*mb*) effects likely incur 10-20% corrections. Important to the extent that $X_{\eta^{(\prime)}},$ $X_{\eta^{(\prime)}}$ are not real. \Longrightarrow Signalled if $X_{\eta^{(\prime)}}\neq X_{\eta^{(\prime)}}.$
- **Does the use of the Feldmann-Kroll-Stech framework for** η , η' matter?

Have also employed two-angle formalism of Leutwyler. No difference incurred at current empirical precision. [Frère, Escribano, 2005]

• How can electromagnetic corrections be included? Recall $K \to \pi \pi$. Treat in simultaneous chiral and electromagnetic expansion.

Isospin Breaking in $B \to \rho \pi$, $B \to \rho \rho$

Isospin breaking effects will differ for different *n*π modes. Here other corrections can also appear; can mimic the violation of isospin.

 \bullet *B* \rightarrow $\rho\pi$

• Other resonances can populate $B \to 3\pi$ Dalitz plot. Non- ρ states yield small impact in neutral B modes.

[SG, Meißner, 2002; Tandean and SG, 2002]

Inclusion of ρ' , ρ'' ? Analyzed assuming fixed P/T ratio.

- Failure of 2-body unitarity in corners of Dalitz plot? Could impact empirical determination of strong phases.
- $\rho^{\mathsf{0}}-\omega$ mixing
	- $\rho^0-\omega$ mixing can be removed via cuts in $\mathsf{M}_{\pi\pi}.$
- $\pi^{\mathsf{0}}-\eta,\eta^{\prime}$ mixing

 α can be fixed through $\overline{B}^0,\overline{B}^0$ data only. $\delta A_{5/2,2}$ always appears with $A_{3/2,2}$; no error accrues if $\delta A_{5/2,2}$ spawned from $\Delta I = 3/2$ operators in isospin-perfect limit. [Gardner, Meißner, 2002]

$B \rightarrow \rho \rho$ decays analyzed in the manner of $B \rightarrow \pi \pi$.

- \bullet *B* \rightarrow *ρρ*
	- Other resonances can populate $B \to 4\pi$ Dalitz plot.
	- $\rho^{\mathsf{0}}-\omega$ mixing

 $\rho^0-\omega$ mixing can be removed via cuts in $\mathsf{M}_{\pi\pi}.$

 \bullet $I = 1$ amplitude

Emerges even if isospin is unbroken. Follows from finite ρ width.

[Falk, Ligeti, Nir, Quinn, 2003]

Current empirical assays assume it negligible.

Current Constraints on α

Decays are analyzed under an assumption of isospin symmetry to determine α .

Production Asymmetry in $e^+e^- \to B^+B^-, B^0\overline{B}^0$

Isospin Symmetry:
$$
e^+e^- \to \Upsilon(4S)
$$
 yields B^+B^- and $B^0\overline{B}^0$ pairs equally.

This can be tested. [Babar, hep-ex/0107025]

$$
\frac{\mathcal{B}(B^+\to(c\overline{c})K)}{\mathcal{B}(B^0\to(c\overline{c})K)}=1.17\pm0.07\pm0.04
$$

Assuming isospin and using $\tau_{B^+}/\tau_{B0} = 1.062 \pm 0.029$ yields

$$
R^{+/0} \equiv \frac{\mathcal{B}(\Upsilon(4S) \rightarrow B^+ B^-)}{\mathcal{B}(\Upsilon(4S) \rightarrow B^0\overline{B}^0)} = 1.10 \pm 0.06 \pm 0.05
$$

"compatible with unity at two standard deviations" <code>Theory</code> yields $R^{+/0} - 1 \stackrel{>}{\sim} 0.1$. [Kaiser, Manohar, Mehen, 2002] Yield of $B^+B^-/B^0\overline{B}^0$ should also vary across $\Upsilon(4S)$. [Voloshin, 2003] Production asymmetry is unlikely to be unity.

The CKM mechanism of CP violation drives the pattern of results found in the B-meson system. Non-SM sources of CP violation are not excluded, but merely relegated to a more minor role. Precision studies may yet reveal new physics!

Backup Slides