Lessons Learned from Studies of CP Violation in the B-Meson System

Susan Gardner

Department of Physics and Astronomy University of Kentucky Lexington, KY 40506

gardner@pa.uky.edu

What is the mechanism of CP violation in Nature? A status report.

• CP Violation in the SM

 \implies There is one CP-violating parameter in the CKM matrix.

• Why do we think there could be CP violation beyond the SM?

The Case of the Missing Anti-Matter

• How can we test the CKM mechanism of CP violation?

 \implies Enter "the" Unitarity Triangle.

- How do we study CP violation in the B system?
- What do we now know about the mechanism of CP violation?
- How well can we test the CKM mechanism of CP violation?

S. Gardner (Univ. of Kentucky)

The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The decay $K^- \rightarrow \mu^- \bar{\nu}_{\mu}$ occurs: the quark mass eigenstates *mix* under the weak interactions. By convention

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{\text{weak}} = V_{\text{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{mass}} ; \quad V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

In the Wolfenstein parametrization (1983)

$$V_{\rm CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

where $\lambda \equiv |V_{us}| \simeq 0.22$ and is thus "small". A, ρ , η are real. All CP-violating phenomena are encoded in η .

To test the SM picture of CP violation we must test the relationships it entails.

S. Gardner (Univ. of Kentucky)

Why B-Meson Decay?

Studies of *b*-quark decay allows us to probe $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0.$ — a relationship predicated by the unitarity of the CKM matrix. All terms are $\mathcal{O}(\lambda^3)$. Enter "the" unitarity triangle...

Testing the Standard Model of CP Violation

Different CP-violating phenomena exist (or are believed to exist) in the B meson system

 CP viola 	tion in <i>B</i>	– $ar{B}$ mix	ing	d	
$\overline{\mathbf{B}}^{0}$	W		W		B^{0}
	d	t		ī	

- CP violation in the interference of $B \overline{B}$ mixing and direct decay
- CP violation in direct decay

Note $|B^0(\tau)\rangle$... a state which is "tagged" as a B^0 meson at proper time $\tau = 0$ has a finite probability of being \overline{B} at proper time τ .

Enter the asymmetric B-factory, to facilitate the study of the time-dependence of CP violation.

There are asymmetric B-factories at SLAC and KEK.

Strong Interaction Obfuscation

Want to learn about underlying CKM parameters, but strong-interaction dynamics can confound this goal. Consider

$$\mathcal{A}_{\textit{direct}} = rac{|\mathcal{A}|^2 - |ar{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |ar{\mathcal{A}}|^2}$$

 $A: M \to h_1 h_2$ and $\bar{A}: \bar{M} \to \bar{h}_1 \bar{h}_2$ An interference effect...

$$A = A_1 + A_2 \equiv A_1 [1 + re^{i\delta} e^{i\phi}]$$
$$\bar{A} = \bar{A}_1 + \bar{A}_2 \equiv \bar{A}_1 [1 + re^{i\delta} e^{-i\phi}]$$
so that $A_{direct} = \frac{-2r \sin \delta \sin \phi}{1 + 2r \cos \delta \cos \phi + r^2}$

 A_{direct} determines a combination of r, δ, ϕ . Note δ strong phase, ϕ weak phase.

Flavor symmetries (SU(2), SU(3)) can be used to relate r and δ of various decays in an approximate way. Precision studies ultimately demand better?

Studying direct CP violation in the B-meson system

Direct CP violation can be studied in a variety of ways:

- Partial rate asymmetry: $|A(B \rightarrow h_1 h_2)|^2 |A(\bar{B} \rightarrow \bar{h}_1 \bar{h}_2)|^2 \neq 0$
- " ϵ' in the B system": cf. $B(t) \rightarrow \psi K_S$ and $B(t) \rightarrow \pi^+ \pi^-$ [Wolfenstein, 1984] $\Gamma(B^0(t) \rightarrow f_{CP}) \propto$ $e^{-\Gamma t} \left[\frac{1+|\lambda_{f_{CP}}|^2}{2} + \frac{1-|\lambda_{f_{CP}}|^2}{2} \cos(\Delta m t) - \operatorname{Im}\lambda_{f_{CP}} \sin(\Delta m t) \right]$ where $\lambda_{f_{CP}} \equiv \eta_{f_{CP}}(q/p)(A(\bar{B} \rightarrow f_{CP})/A(B \rightarrow f_{CP})).$ Note $-\lambda_{\psi K_S} \neq \lambda_{\pi^+\pi^-}$ implicitly signals direct CP violation.
- Angular distribution in $B \rightarrow V_1 V_2$ [Sinha & Sinha, 1998]
- Population asymmetry in $|A(B \rightarrow f_{CP})|^2 + |A(\bar{B} \rightarrow f_{CP})|^2$ [SG, 2003; SG & Tandean, 2004]

Direct CP violation in the B-meson system established through the partial-rate asymmetry in the "self-tagged" modes $B(\bar{B}) \rightarrow K^{\pm} \pi^{\mp}$.

An Illustration: $B, \overline{B} \rightarrow \pi^+\pi^-\pi^0$ Decay

 $$s_{.0}~(\text{GeV}^2)$$ The failure of mirror symmetry in the Dalitz plot of the untagged decay rate signals the presence of direct CP violation.

Time-Dependent Studies to CP-Eigenstates

$$\begin{split} &\Gamma(B^0(t) \to f_{CP}) \propto \\ &e^{-\Gamma t} \left[\frac{1+|\lambda_{f_{CP}}|^2}{2} + \frac{1-|\lambda_{f_{CP}}|^2}{2} \cos(\Delta m t) - \operatorname{Im} \lambda_{f_{CP}} \sin(\Delta m t) \right] \\ &\text{where } \lambda_{f_{CP}} \equiv \eta_{f_{CP}}(q/p) (A(\bar{B} \to \bar{f}_{CP})/A(B \to f_{CP})). \\ &\text{If the decay amplitude can be characterized by an unique weak phase,} \\ &\text{the strong dynamics cancels entirely!} \\ &\text{Enter the "golden" mode } B \to \psi K_{S}... \operatorname{Im} \lambda_{\psi K_{S}} \text{ measures sin}(2\beta). \end{split}$$

Note
$${
m sin}(2eta)=$$
 0.675 \pm 0.026 (WA) from $\psi {
m \it K_S}$ and related modes.

$sin(2\beta)$ from Penguin Modes

The penguin modes $B \to \phi K_S$, $B \to \eta' K_S$, $B \to f_0 K_S$, etc. also measure $sin(2\beta)$ in the SM. [Grossman, Worah (1996)] Many possible modes exist.

N.B. the SM corrections to the $sin(2\beta)$ measurement are not uniformly small.

However, $S(\phi K_S) - S(\psi K_S) = 0.02 \pm 0.01$.

$sin(2\beta)$ from Penguin Modes

Naive average yields $sin(2\beta) = 0.52 \pm 0.05$ (HFAG)– a deviation of 2.6 σ ! (cf. M. Neubert, Moriond-EW Mar 07, 0.50 ± 0.06) Discounting differences as statistical fluctuations yields a "global" value

of $sin(2\beta) = 0.647 \pm 0.024$

~ off

	sin(2	2 β ^{en}) ≡	sin	(2)	(ϕ_1^{en})
b→ccs	World Ave	rage			0.68 ± 0.03
φK ⁰	Average		⊢ ★-1		0.39 ± 0.18
η΄ Κ ⁰	Average		1		0.61 ± 0.07
$K_{s} K_{s} K_{s}$	Average		+*		0.51 ± 0.21
$\pi^0 \ {\sf K}_{{\mathbb S}}$	Average		⊢ ★-1		0.33 ± 0.21
$\rho^0 K_{\rm S}$	Average		*	•	0.20 ± 0.57
ωK _S	Average		⊢*		0.48 ± 0.24
$f_0 K^0$	Average		++1		0.42 ± 0.17
$\pi^0 \ \pi^0 \ K_{_{\rm S}}$	Averag e	* 1			$\textbf{-0.84}\pm0.71$
K ⁺ K ⁻ K ⁰	Average		. ++		0.58 ± 0.13
-3	-2	-1	0	1	2 3

S. Gardner (Univ. of Kentucky)

The possibility of non-SM CP violation is gradually being relegated to a smaller and smaller role.

Nevertheless, intriguing discrepanies remain, of which $sin(2\beta)$ from tree and penguin modes is one.

Testing the CKM paradigm, 2006

Can also compare combined average $\sin(2\beta) = 0.647 \pm 0.024$ with the value deduced from $|V_{ub}|$ and $|V_{td}|$ alone, to yield $\sin(2\beta) = 0.794 \pm 0.045$, for a deviation of 2.9σ . [M. Neubert, Moriond EW Mar 07] Can be used to set limits on new physics in $B_d - \bar{B}_d$ mixing.

New Physics in $B_d - \bar{B}_d$ Mixing

S. Gardner (Univ. of Kentucky)

Can CP-Violating Observables in the B-Meson System Vield CKM parameters at the $\mathcal{O}(1\%)$ Level?

This is less daunting than it may seem.

Consider, e.g., $A_{CP}(t)$ in $B(\overline{B}) \to J/\psi K_S$. The $b \to su\overline{u}$ "pollution" is suppressed by $\mathcal{O}(\lambda^2)$ and by loop effects.

This yields sin(2 β) up to an (estimated) correction of $-(2 \pm 2) \cdot 10^{-4}$, [Boos, Mannel, Reuter, 2004] which can be tested with $B_s \rightarrow J/\psi K_S$ data. [Fleischer, 1999]

Flavor symmetries can also be used to probe CKM angles.

Here we consider the use of isospin symmetry to determine α from $B \rightarrow \pi\pi (n\pi)$ decay. Our goal is to assess all isospin-breaking effects.

Trees and Penguins in $b \rightarrow dq\overline{q}$ ($B \rightarrow \pi\pi$, etc.)

S. Gardner (Univ. of Kentucky)

The CKM angle α (or γ) can be determined under an assumption of isospin symmetry from the analysis of $B \rightarrow \pi\pi$ [Gronau, London, 1990], $B \rightarrow \rho\pi$ [Snyder, Quinn, 1993], and $B \rightarrow \rho\rho$ modes.

Here we focus on $B \to \pi\pi$. $A_{CP}(t)$ in $B(\overline{B}) \to \pi^{-}\pi^{+}$ decay yields $\sin(2\alpha_{eff})$.

In the Standard Model $\alpha = \pi - \beta - \gamma$; $\gamma \leftrightarrow$ tree-level decay. Penguins make $\Delta \alpha = \alpha_{\text{eff}} - \alpha \neq 0$. Under isospin, two pions have I = 0, 2 only; $B \to \pi\pi$ amplitude A_I .

$$A_{B^0 o \pi^+ \pi^-} \equiv A_0 + rac{1}{\sqrt{2}} A_2 \;, \; \; A_{B^0 o \pi^0 \pi^0} \equiv A_0 - \sqrt{2} A_2 \;, \; \; A_{B^+ o \pi^+ \pi^0} \equiv rac{3}{2} A_2 \;,$$

QCD penguins yield I = 0 only \Longrightarrow must separate out A_0/A_2 (& $\overline{A}_0/\overline{A}_2$). Can do so with $\mathcal{B}(B(\overline{B}) \to \pi^i \pi^j)$ data.

[SG, 2005]

$$\Delta \alpha = \frac{1}{2}(\bar{\phi}' - \phi') + \frac{1}{2}(\bar{\zeta} - \zeta) + \frac{1}{2}\left[(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')\right] ,$$

Last term vanishes if ξ and $\overline{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$:

$$\delta(\Delta \alpha) = 1.2^{\circ} \left[\xi\right] + 1.5^{\circ} \left[P_{ew}\right] + 1.1^{\circ} \left[P_{\pi^{0} - \eta, \eta'}\right] + \cdots \approx 4^{\circ},$$

$$\sigma^{\mathrm{IB}}_{\alpha} = 0.4^{\circ} \left[\xi \right] + \ 0.3^{\circ} \left[\boldsymbol{P}_{ew} \right] + 0.2^{\circ} \left[\boldsymbol{P}_{\pi^{0} - \eta, \eta'} \right] + 1.1^{\circ} \left[\mathsf{bound} \right] + \cdots \approx 2^{\circ} \,,$$

There is no central limit theorem for theoretical error.

What has been omitted?!

 \implies Long-distance electromagnetic effects.

S. Gardner (Univ. of Kentucky)

[SG, 2005]

$$\Delta \alpha = \frac{1}{2}(\bar{\phi}' - \phi') + \frac{1}{2}(\bar{\zeta} - \zeta) + \frac{1}{2}\left[(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')\right] ,$$

Last term vanishes if ξ and $\overline{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$:

$$\delta(\Delta \alpha) = 1.2^{\circ} \, [\xi] + 1.5^{\circ} \, [P_{ew}] + 1.1^{\circ} \, [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^{\circ} \, ,$$

$$\sigma^{\mathrm{IB}}_{lpha} = 0.4^{\circ} \left[\xi
ight] + \ 0.3^{\circ} \left[\mathcal{P}_{ew}
ight] + 0.2^{\circ} \left[\mathcal{P}_{\pi^{0} - \eta, \eta'}
ight] + 1.1^{\circ} \left[\mathsf{bound}
ight] + \cdots pprox 2^{\circ} \,,$$

There is no central limit theorem for theoretical error.

What has been omitted?!

 \implies Long-distance electromagnetic effects.

S. Gardner (Univ. of Kentucky)

[SG, 2005]

$$\Delta \alpha = \frac{1}{2} (\bar{\phi}' - \phi') + \frac{1}{2} (\bar{\zeta} - \zeta) + \frac{1}{2} \left[(\bar{\phi} - \phi) - (\bar{\phi}' - \phi') \right] \,,$$

Last term vanishes if ξ and $\overline{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$:

$$\delta(\Delta \alpha) = 1.2^{\circ} \, [\xi] + 1.5^{\circ} \, [P_{ew}] + 1.1^{\circ} \, [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^{\circ} \, ,$$

$$\sigma^{\mathrm{IB}}_{lpha} = 0.4^{\circ} \left[\xi
ight] + \ 0.3^{\circ} \left[\mathcal{P}_{ew}
ight] + 0.2^{\circ} \left[\mathcal{P}_{\pi^{0} - \eta, \eta'}
ight] + 1.1^{\circ} \left[\mathsf{bound}
ight] + \cdots pprox 2^{\circ} \,,$$

There is no central limit theorem for theoretical error.

What has been omitted?!

 \implies Long-distance electromagnetic effects.

S. Gardner (Univ. of Kentucky)

[SG, 2005]

$$\Delta \alpha = \frac{1}{2}(\bar{\phi}' - \phi') + \frac{1}{2}(\bar{\zeta} - \zeta) + \frac{1}{2}\left[(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')\right] ,$$

Last term vanishes if ξ and $\overline{\xi}$ are real. Up to $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$:

$$\delta(\Delta \alpha) = 1.2^{\circ} \left[\xi\right] + 1.5^{\circ} \left[\boldsymbol{P}_{ew}\right] + 1.1^{\circ} \left[\boldsymbol{P}_{\pi^{0} - \eta, \eta'}\right] + \dots \approx 4^{\circ},$$

$$\sigma^{\mathrm{IB}}_{lpha} = 0.4^{\circ} \left[\xi
ight] + \ 0.3^{\circ} \left[\mathcal{P}_{ew}
ight] + 0.2^{\circ} \left[\mathcal{P}_{\pi^{0} - \eta, \eta'}
ight] + 1.1^{\circ} \left[\mathsf{bound}
ight] + \cdots pprox 2^{\circ} \,,$$

There is no central limit theorem for theoretical error.

What has been omitted?!

 \implies Long-distance electromagnetic effects.

Detailed numbers can change as data is updated. Have used CP-averaged branching ratios throughout.

 How does the analysis rely on QCD factorization framework? Relies on factorization formula; also follows from SCET in leading power. Scalar penguins do not appear.
 O(Λ_{QCD}/m_b) effects likely incur 10-20% corrections. Important to the extent that X_η(·), X_η(·) are not real.

 \implies Signalled if $X_{\eta^{(\prime)}} \neq \overline{X}_{\eta^{(\prime)}}$.

• Does the use of the Feldmann-Kroll-Stech framework for η,η' matter?

Have also employed two-angle formalism of Leutwyler. No difference incurred at current empirical precision. [Frère, Escribano, 2005]

• How can electromagnetic corrections be included? Recall $K \to \pi\pi$. Treat in simultaneous chiral and electromagnetic expansion.

Isospin Breaking in $B \rightarrow \rho \pi$, $B \rightarrow \rho \rho$

Isospin breaking effects will differ for different $n\pi$ modes. Here other corrections can also appear; can mimic the violation of isospin.

• $B \rightarrow \rho \pi$

• Other resonances can populate $B \rightarrow 3\pi$ Dalitz plot. Non- ρ states yield small impact in neutral B modes.

[SG, Meißner, 2002; Tandean and SG, 2002]

Inclusion of ρ', ρ'' ? Analyzed assuming fixed P/T ratio.

- Failure of 2-body unitarity in corners of Dalitz plot? Could impact empirical determination of strong phases.
- $\rho^0 \omega$ mixing
 - $\rho_{-}^{0} \omega$ mixing can be removed via cuts in $M_{\pi\pi}$.
- $\pi^0 \eta, \eta'$ mixing

 α can be fixed through B^0 , \overline{B}^0 data only. $\delta A_{5/2,2}$ always appears with $A_{3/2,2}$; no error accrues if $\delta A_{5/2,2}$ spawned from $\Delta I = 3/2$ operators in isospin-perfect limit. [Gardner, Meißner, 2002]

$B \rightarrow \rho \rho$ decays analyzed in the manner of $B \rightarrow \pi \pi$.

- $\boldsymbol{B} \to \rho \rho$
 - Other resonances can populate $B \rightarrow 4\pi$ Dalitz plot.
 - $\rho^0 \omega$ mixing

 $ho^0 - \omega$ mixing can be removed via cuts in $M_{\pi\pi}$.

• *I* = 1 amplitude

Emerges even if isospin is unbroken. Follows from finite ρ width.

[Falk, Ligeti, Nir, Quinn, 2003]

Current empirical assays assume it negligible.

Current Constraints on α

Decays are analyzed under an assumption of isospin symmetry to determine α .

24

Production Asymmetry in $e^+e^- \rightarrow B^+B^-, B^0\overline{B}^0$

Isospin Symmetry:
$$e^+e^- \to \Upsilon(4S)$$
 yields B^+B^- and $B^0\overline{B}^0$ pairs equally.

This can be tested. [Babar, hep-ex/0107025]

$$rac{\mathcal{B}(B^+
ightarrow (c\overline{c})K)}{\mathcal{B}(B^0
ightarrow (c\overline{c})K)} = 1.17 \pm 0.07 \pm 0.04$$

Assuming isospin and using $\tau_{B^+}/\tau_{B^0} = 1.062 \pm 0.029$ yields

$$R^{+/0} \equiv rac{\mathcal{B}(\Upsilon(4S)
ightarrow B^+B^-)}{\mathcal{B}(\Upsilon(4S)
ightarrow B^0\overline{B}^0)} = 1.10 \pm 0.06 \pm 0.05$$

"compatible with unity at two standard deviations" Theory yields $R^{+/0} - 1 \stackrel{>}{\sim} 0.1$. [Kaiser, Manohar, Mehen, 2002] Yield of $B^+B^-/B^0\overline{B}^0$ should also vary across $\Upsilon(4S)$. [Voloshin, 2003] Production asymmetry is unlikely to be unity.

S. Gardner (Univ. of Kentucky)

The CKM mechanism of CP violation drives the pattern of results found in the B-meson system. Non-SM sources of CP violation are not excluded, but merely relegated to a more minor role. Precision studies may yet reveal new physics!

Backup Slides