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Radiative Neutron Decay

Despite decades of experimental study, the radiative decay mode of
neutron beta decay had never been observed

n→ e− + p+ + νe + γ Theory:

Glück, 1993: Distributions of unpolarized
neutron decay include bremsstrahlung photons.

Gaponov and Kafizov, 1995: Explicit
branching ratio and γ energy spectrum in QED
framework – Proton treated as structureless
charged particle.

Bernard, Gardner, Meißner, and Zhang,
2004: Chiral perturbation theory framework.
Includes photon emission from effective weak
vertex in O(1/M).
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Gluck, PRD 47, 2840(1993); Gaponov and Khafizov, Phys. Atom. Nucl. 59, 1213(1996); Bernard et al. PLB 593, 105 (2004)
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RDK Photon Spectrum and Branching Ratio
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Photon Energy Spectrum

Energy window of NIST measurement

Bernard, et al. BR ≈ 2.8 x 10
-3

 [Theory]
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Branching Ratio for Radiative Neutron Decay
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Why Study Radiative Neutron β-Decay?

This rare branch of a fundamental decay has never been observered for the
neutron

Fundamental process in a fundamental semileptonic decay

Determine vector (gV ) and axial-vector (gA) weak coupling constants

Study hadron matrix elements in O(1/M) (≈ 0.5%)

Test Dirac structure of the weak current through photon polarization (i.e., non
V-A currents)

Examine new class of angular correlations: e.g. σn · pγ , pγ · (pe × pν), etc.
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Radiative Decay of the Neutron

Goal:

Measure photon and electron in coincidence with delayed proton
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Experimental Challenges

Long τn (885.7 ± 0.8 s)

Small branching ratio

Large γ backgrounds

Isolate from backgrounds: external
bremsstrahlung
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Neutron Radiative Decay at ILL

Beck et al, JETP Lett. 76 (2002)

BR ≤ k
NT

ND
(εγΩf)−1

BR < 6.9× 10−3 (90% C.L.)

M. Beck1 , J. Byrne2, R. U. Khafizov3, V. Yu.
Kozlov1, Yu. A. Mostovoi3, O. V. Rozhnov4, N.
Severijns1, and V. A. Solovei4

1 Katholieke Universiteit Leuven
2 University of Sussex
3 Russian Research Centre Kurchatov Institute
4 Petersburg Nuclear Physics Institute
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NIST Center for Neutron Research

20 MW split-core research reactor, peak neutron fluence rate = 4× 1014 cm−2 s−1
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NIST Center for Neutron Research – Cold Neutron Source

Neutrons partially thermalize in a cold source
• NCNR, liquid hydrogen (eff. 20K)
• Slow neutrons have larger probability of
decaying in the detector

Cold source at NCNR

• neutron temp ≈ 40 K
• neutron energy ≈ 3.4 meV

• neutron velocity ≈ 800 m/s

• neutron flux (typ. ≈ 10 cm s )
9 2 -1
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Cold Neutron Guide Hall

Neutron Physics Program:
  • 25 postdocs
  • 19 Ph.D. theses
  • 27 graduate students
  • 30 undergraduate students

  • 20 collaborating institutions 

Support:
	 DoC/NIST
	 NSF (collaborators)
	 DoE
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Experimental Setup

. 4.6 Tesla axial magnetic field traps charged charged decay products to tight
cyclotron orbits – provides large solid-angle coverage

. Delayed electron-proton coincidence trigger strongly rejects uncorrelated photon
background

. Electrostatic mirror turns around “wrong-way” protons

. Waveform-based DAQ
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Photon Detection

Bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs)
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 BGO+APD Photon Spectrum 
at 77K

APD gain increases, noise decreases with cooling

Light yield of crystals increases with cooling

Large crystals (10-20 cm in length) available at reasonable cost

APDs operate in high (> 4 Tesla) magnetic field

Stable operation over two months of data-taking
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Experimental Apparatus

1 m

Superconducting Solenoid

Photon Detector
Electron/proton

coinicidence detector

Neutron beam

Neutron Collimation and shielding

(Li-glass and LiF)

To flux monitor

and beam dump

Electrostatic

Mirror
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Experimental Apparatus
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End of NG-6
Guide tubes

Biological
shield

Collimator
Proton

detection

Solenoid w/
Photon det.

Beam Dump/
Monitor
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BGO and APD

Beam entrance

BGO crystal

Electrostatic
mirror

APD

SBD
(not visible)
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Waveform-Based DAQ
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Electron and Proton Energy Spectra

Obtained from waveforms (before cuts)

Electron Pulse Area [arb. units]
Proton Pulse Area [arb. units]

Electron-proton delayed coincidence rate: 5 s−1 - 20 s−1

INT Seminar The Radiative Decay Mode of the Neutron



Electron-Proton Timing Spectra

Varying the electrostatic mirror potential allows sampling different regions of the
proton’s phase space:
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Photon Energy Spectrum

with ep delayed coincidence requirement

Photon “singles” rate ≈ 100 s−1

Photon rate with e-p requirement: 0.02 s−1 - 0.08 s−1
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Summary of Cuts

Waveform-based DAQ allows us to perform many cuts to separate signal from
background:

proton energy 2 FWHM
electron energy > 35 keV (hardware threshold)
photon energy ≈ 15 keV - ≈ 340 keV

e-p timing 2.5 µs - 20 µs
e-γ timing 2 FWHM

e-p baseline cut e-p waveform must return to baseline
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Electron-Photon Timing Spectrum
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Subset of data taken at 1500 V mirror voltage.  Preliminary.

includes e-p coincidence requirement
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Photon Energy Spectrum (on eγ timing peak)
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Event Rates vs. Mirror Voltage

Varying mirror voltage adjusts Rep and Repγ rates by reflecting protons
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Ratio Rep/Repγ is a constant for all potential backgrounds except
external bremsstrahlung.
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Event Rates vs. Mirror Voltage

Varying mirror voltage adjusts Rep and Repγ rates by reflecting protons
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Monte Carlo Event Generation and Particle Transport

Necessary to extract branching ratio and understand systematics

Brute-force particle tracking:
Lorentz force equation with E and B field maps
4th order Runge-Kutta

Accounts for all drift mechanisms (∇
−→
B ,

−→
E ×

−→
B , curvature, ...)

Don’t forget special relativity!

Adiabatic transport:

Assumes drift forces negligible

Trace
−→
B -field lines to detector

Adiabatic assumption for
momenta

Inputs for both methods:
−→
B and

−→
E field maps

apparatus geometry

beam profile and divergence
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Monte Carlo Modeling

INT Seminar The Radiative Decay Mode of the Neutron



Monte Carlo Modeling
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Repγ/Rep Ratio vs. Mirror Potential
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Branching Ratio Result (15 keV ≤ Eγ ≤ 340 keV)

BRRDK I = (3.13± 0.34)× 10−3

BRtheory = 2.81× 10−3

Systematic Correction (%) Uncertainty(%)

photon drift/calibration 6.0

analysis cut efficiencies 5.0

MC stats 4.0

photon detection efficiency and resolution 3.0 3.0

beam divergence and profile 3.0

electron bremsstrahlung -3.0 3.0

B field registration 2.0

mirror potential registration 1.0

electron backscattering 0.5

electronic artifacts 0.5

Total Systematic 0 10.4

Statistical 3.4

Total Uncertainty 10.9
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“Pathological” e-p events

Electron-proton coincidence trigger greatly reduces uncorrelated
backgrounds, but correlated backgrounds can produce a false signal.

Both beam and high-voltage related events can produce false coincidences,
but they are highly suppressed by cuts.
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External Electron Bremsstrahlung

Effect mitigated by limited line of sight

MCNP modeling of production and transport through materials
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Conclusions

We have observed the radiative decay mode of the neutron:

Electron-γ peak at correct place in timing spectrum

Spectrum shape and branch consistent with theoretical prediction

Rates consistent with predicted BR and Monte Carlo models and behavior
vs. mirror potential demonstrates influence of photon on the recoiling
proton’s momentum distribution
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RDK II: Precision Measurement of Branching Ratio and
Photon Spectrum

Goal: 1% measurement

. 12-element photon detector array to increase solid angle

. 12 independent channels of electronics

. Higher statistical accuracy

. More thorough investigation of systematic effects

. Improve signal-to-background

Neutron
Beam

(2-3 cm)

BGO
or

CsI

APD

Magnet Bore
(11.4 cm diam)

LN2 Sink
(9.5 cm ID)
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