First Observation of the Radiative Decay Mode of the Neutron

Brian Fisher

National Research Council Postdoctoral Associate National Institute of Standards and Technology

INT: Fundamental Neutron Physics Seminar 15 May 2007

Despite decades of experimental study, the radiative decay mode of neutron beta decay had never been observed

$n ightarrow e^- + p^+ + \overline{ u}_e + \gamma$ Theory:

- **Glück**, **1993**: Distributions of unpolarized neutron decay include bremsstrahlung photons.
- Gaponov and Kafizov, 1995: Explicit branching ratio and γ energy spectrum in QED framework – Proton treated as structureless charged particle.
- Bernard, Gardner, Meißner, and Zhang, 2004: Chiral perturbation theory framework. Includes photon emission from effective weak vertex in $\mathcal{O}(1/M)$.

< ∃ > < ∃ >

Gluck, PRD 47, 2840(1993); Gaponov and Khafizov, Phys. Atom. Nucl. 59, 1213(1996); Bernard et al. PLB 593, 105 (2004)

RDK Photon Spectrum and Branching Ratio

э

Why Study Radiative Neutron β -Decay?

- This rare branch of a fundamental decay has never been observered for the neutron
- Fundamental process in a fundamental semileptonic decay
- Determine vector (g_V) and axial-vector (g_A) weak coupling constants
- Study hadron matrix elements in $\mathcal{O}(1/M)~(\approx 0.5\%)$
- Test Dirac structure of the weak current through photon polarization (i.e., non V-A currents)
- Examine new class of angular correlations: e.g. $\sigma_{\mathbf{n}} \cdot \mathbf{p}_{\gamma}$, $\mathbf{p}_{\gamma} \cdot (\mathbf{p}_e \times \mathbf{p}_{\nu})$, etc.

Why Study Radiative Neutron β -Decay?

- This rare branch of a fundamental decay has never been observered for the neutron
- Fundamental process in a fundamental semileptonic decay
- Determine vector (g_V) and axial-vector (g_A) weak coupling constants
- Study hadron matrix elements in $\mathcal{O}(1/M)~(\approx 0.5\%)$
- Test Dirac structure of the weak current through photon polarization (i.e., non V-A currents)
- Examine new class of angular correlations: e.g. $\sigma_{\mathbf{n}} \cdot \mathbf{p}_{\gamma}$, $\mathbf{p}_{\gamma} \cdot (\mathbf{p}_e \times \mathbf{p}_{\nu})$, etc.

Why Study Radiative Neutron β -Decay?

- This rare branch of a fundamental decay has never been observered for the neutron
- Fundamental process in a fundamental semileptonic decay
- Determine vector (g_V) and axial-vector (g_A) weak coupling constants
- Study hadron matrix elements in $\mathcal{O}(1/M)~(\approx 0.5\%)$
- Test Dirac structure of the weak current through photon polarization (i.e., non V-A currents)
- Examine new class of angular correlations: e.g. $\sigma_{\mathbf{n}} \cdot \mathbf{p}_{\gamma}$, $\mathbf{p}_{\gamma} \cdot (\mathbf{p}_e \times \mathbf{p}_{\nu})$, etc.

Theoretical work is needed to know the size of these effects and their implications

Goal:

Measure photon and electron in coincidence with delayed proton

Experimental Challenges

- Long au_n (885.7 \pm 0.8 s)
- Small branching ratio
- Large γ backgrounds
- Isolate from backgrounds: external bremsstrahlung

글 > : < 글 >

Goal:

Measure photon and electron in coincidence with delayed proton

Experimental Challenges

- Long au_n (885.7 \pm 0.8 s)
- Small branching ratio
- Large γ backgrounds
- Isolate from backgrounds: external bremsstrahlung

글 > : < 글 >

Radiative Decay of the Neutron

Goal:

Measure photon and electron in coincidence with delayed proton

Experimental Challenges

- Long au_n (885.7 \pm 0.8 s)
- Small branching ratio
- Large γ backgrounds
- Isolate from backgrounds: external bremsstrahlung

글 > : < 글 >

Goal:

Measure photon and electron in coincidence with delayed proton

Experimental Challenges

- Long au_n (885.7 \pm 0.8 s)
- Small branching ratio
- Large γ backgrounds
- Isolate from backgrounds: external bremsstrahlung

(B)

э

Neutron Radiative Decay at ILL

M. Beck¹, J. Byrne², R. U. Khafizov³, V. Yu. Kozlov¹, Yu. A. Mostovoi³, O. V. Rozhnov⁴, N. Severijns¹, and V. A. Solovei⁴

1 Katholieke Universiteit Leuven

- 2 University of Sussex
- 3 Russian Research Centre Kurchatov Institute
- 4 Petersburg Nuclear Physics Institute

$$BR \le k \frac{N_T}{N_D} (\epsilon_\gamma \Omega f)^{-1}$$

$$BR < 6.9 \times 10^{-3} \ (90\% \, {\rm C.L.})$$

200

Beck et al, JETP Lett. 76 (2002)

NIST Center for Neutron Research

20 MW split-core research reactor, peak neutron fluence rate = 4×10^{14} cm $^{-2}$ s $^{-1}$

- ∢ ≣ ▶

-

3

NIST Center for Neutron Research – Cold Neutron Source

Neutrons partially thermalize in a cold source

- NCNR, liquid hydrogen (eff. 20K)
- Slow neutrons have larger probability of decaying in the detector
- neutron temp ≈ 40 K
- neutron energy ≈ 3.4 meV
- neutron velocity ≈ 800 m/s
- neutron flux (typ. $\approx 10^9$ cm² s⁻¹)

- ∢ ⊒ →

Experimental Setup

 4.6 Tesla axial magnetic field traps charged charged decay products to tight cyclotron orbits – provides large solid-angle coverage

- Delayed electron-proton coincidence trigger strongly rejects uncorrelated photon background
- Electrostatic mirror turns around "wrong-way" protons
- Waveform-based DAQ

3

Photon Detection

Bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs)

- APD gain increases, noise decreases with cooling
- Light yield of crystals increases with cooling
- Large crystals (10-20 cm in length) available at reasonable cost
- APDs operate in high (> 4 Tesla) magnetic field
- Stable operation over two months of data-taking

<回><モン</td>

э

Experimental Apparatus

End of NG-6 Guide tubes **Biological** shield Collimator Proton detection Solenoid w/ Photon det. Beam Dump/ Monitor

BGO and APD

(not visible) Beam entrance

BD

BGO crystal -

Electrostatic / mirror

500

APD

Waveform-Based DAQ

Electron-proton delayed coincidence rate: 5 s⁻¹ - 20 s⁻¹

(E)

A >

э

Electron-Proton Timing Spectra

Varying the electrostatic mirror potential allows sampling different regions of the proton's phase space:

INT Seminar The Radiative Decay Mode of the Neutron

Photon Energy Spectrum

- Photon "singles" rate pprox 100 s $^{-1}$
- \bullet Photon rate with e-p requirement: 0.02 s^{-1} 0.08 s^{-1}

3 x 3

Waveform-based DAQ allows us to perform many cuts to separate signal from background:

proton energy	2 FWHM	
electron energy	> 35 keV (hardware threshold)	
photon energy	pprox 15 keV - $pprox$ 340 keV	
e-p timing	2.5 μs - 20 μs	
e- γ timing	2 FWHM	
e-p baseline cut	e-p waveform must return to baseline	

문어 귀 문어 ...

3

Electron-Photon Timing Spectrum

includes e-p coincidence requirement

프 () () () (

э

Photon Energy Spectrum (on $e\gamma$ timing peak)

Event Rates vs. Mirror Voltage

Varying mirror voltage adjusts R_{ep} and $R_{ep\gamma}$ rates by reflecting protons

Ratio $R_{ep}/R_{ep\gamma}$ is a constant for all potential backgrounds except external bremsstrahlung.

Event Rates vs. Mirror Voltage

Varying mirror voltage adjusts R_{ep} and $R_{ep\gamma}$ rates by reflecting protons

Ratio $R_{ep}/R_{ep\gamma}$ is a constant for all potential backgrounds except external bremsstrahlung.

Monte Carlo Event Generation and Particle Transport

Necessary to extract branching ratio and understand systematics

• Brute-force particle tracking:

- Lorentz force equation with E and B field maps
- 4th order Runge-Kutta
- Accounts for all drift mechanisms ($abla \overrightarrow{B}$, $\overrightarrow{E} imes \overrightarrow{B}$, curvature, ...)
- Don't forget special relativity!

• Adiabatic transport:

- Assumes drift forces negligible
- Trace \overrightarrow{B} -field lines to detector
- Adiabatic assumption for momenta

Inputs for both methods:

- \overrightarrow{B} and \overrightarrow{E} field maps
- apparatus geometry
- beam profile and divergence

Monte Carlo Modeling

글에 비 글에 !

æ

Monte Carlo Modeling

æ

注▶ ★注▶

$R_{ep\gamma}/R_{ep}$ Ratio vs. Mirror Potential

INT Seminar The Radiative Decay Mode of the Neutron

Branching Ratio Result (15 keV $\leq E_{\gamma} \leq$ 340 keV)

 $\begin{array}{l} BR_{RDK\ I} = (3.13\pm0.34)\times10^{-3} \\ BR_{theory} = 2.81\times10^{-3} \end{array}$

Systematic	Correction (%)	Uncertainty(%)
photon drift/calibration		6.0
analysis cut efficiencies		5.0
MC stats		4.0
photon detection efficiency and resolution	3.0	3.0
beam divergence and profile		3.0
electron bremsstrahlung	-3.0	3.0
B field registration		2.0
mirror potential registration		1.0
electron backscattering		0.5
electronic artifacts		0.5
Total Systematic	0	10.4
Statistical		3.4
Total Uncertainty		10.9

< 3 > < 3 >

3

"Pathological" e-p events

- Electron-proton coincidence trigger greatly reduces uncorrelated backgrounds, but correlated backgrounds can produce a false signal.
- Both beam and high-voltage related events can produce false coincidences, but they are highly suppressed by cuts.

External Electron Bremsstrahlung

- Effect mitigated by limited line of sight
- MCNP modeling of production and transport through materials

Conclusions

We have observed the radiative decay mode of the neutron:

- Electron- γ peak at correct place in timing spectrum
- Spectrum shape and branch consistent with theoretical prediction
- Rates consistent with predicted BR and Monte Carlo models and behavior vs. mirror potential demonstrates influence of photon on the recoiling proton's momentum distribution

-

Conclusions

We have observed the radiative decay mode of the neutron:

- Electron- γ peak at correct place in timing spectrum
- Spectrum shape and branch consistent with theoretical prediction
- Rates consistent with predicted BR and Monte Carlo models and behavior vs. mirror potential demonstrates influence of photon on the recoiling proton's momentum distribution

Vol 444 21/28 December 2006 doi:10.1038/nature05390

LETTERS

nature

3

Observation of the radiative decay mode of the free neutron

Jeffrey S. Nico¹, Maynard S. Dewey¹, Thomas R. Gentile¹, H. Pieter Mumm¹, Alan K. Thompson¹, Brian M. Fisher², Isaac Kremsky², Fred E. Wietfeldt², Timothy E. Chupp³, Robert L. Cooper³, Elizabeth J. Beise⁴, Kristin G. Kiriluk⁴, James Byrne⁵ & Kevin J. Coakley⁶

RDK II: Precision Measurement of Branching Ratio and Photon Spectrum

Goal: 1% measurement

- ▷ 12-element photon detector array to increase solid angle
- 12 independent channels of electronics
- Higher statistical accuracy
- More thorough investigation of systematic effects
- Improve signal-to-background

Collaborators

T. E. Chupp R. L. Cooper

B. M. Fisher I. Kremsky F. E. Wietfeldt

E. J. Beise K. G. Kiriluk

J. Byrne

글 🖌 🔺 글 🕨

3