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Prologue: What Do EDM’s Have to Do With T?

Consider nondegenerate ground state |g.s. : J, M〉. Symmetry

under rotations Ry(π) ⇒ for a vector operator like ~d ≡
∑

i

ei~ri ,

〈g.s. : J, M|~d |g.s. : J, M〉 = −〈g.s. : J,−M|~d |g.s. : J,−M〉 .

T takes M to −M, like Ry(π). But ~d is odd under Ry(π) and even
under T , so for T conserved

〈g.s. : J, M|~d |g.s. : J, M〉 = + 〈g.s. : J,−M|~d |g.s. : J,−M〉 .

Together with the first equation, this implies

〈~d〉 = 0 .

If T is violated, argument fails because T can take |g.s. : JM〉 to
|ex. : J,−M〉, a state in a different multiplet.



Interesting Paper

Nuclear electric dipole moment with relativistic effects in Xe
and Hg atom

(Phys. Rev. C75, 035501 (2007))

Sachiko Oshima, Takehisa Fujita, and Tomoko Asaga

The atomic electric dipole moment (EDM) is evaluated by considering the relativistic effects
as well as nuclear finite size effects in Xe and Hg atomic systems. . . . As the results, the
finite contribution to the atomic EDM comes from the first order perturbation energy of
relativistic effects, and it amounts to around 0.3 and 0.4 percents of the neutron EDM dn for
Xe and Hg, respectively, though the calculations are carried out with a simplified
single-particle nuclear model. From this relation in Hg atomic system, we can extract the
neutron EDM which is found to be just comparable with the direct neutron EDM
measurement.

Relativitistic corrections to dipole operator unshielded for electrons

Claim: For nucleons, the corrections suppressed by v2/c2 ≈ .01

Usual screening suppression on order of 10Z 2R2
N/R2

A ≈ .001

Atomic EDMs about 10 times more sensitive than peviously
thought!



Really Correct?
Relativistic dipole operator:

d = βΣ = β

(
σ 0
0 σ

)
Perturbing Hamiltonian:

H1 = −
A∑

j=1

d j
NβΣj · E + e

Z∑
i=1

r i · E

(
−e

Z∑
k=1

Rk · E

)
Nucleon EDMs Electron coords. Proton coords.

Unperturbed Hamiltonian:

H0 = H int
e + H int

nuc + He–nuc He–nuc =
Z∑

i=1

Z e2

ri
+ . . .

First order energy shift in external field:

∆E(1) = −〈g.s.|
A∑

j=1

d j
N β Σj |g.s.〉 · Eext



But must consider atomic polarization:

∆E(2) =−
∑

n

1
Eg.s. − En

〈g.s.|

 A∑
j=1

d j
N β Σj

 ·

(
Z∑

i=1

∇iA0

)
|n〉

× 〈n|e
Z∑

k=1

rk · Eext|g.s.〉+ h.c.

Electric field at nucleus from ith electron
Atomic excitations

A0 =
Z∑

i=1

e
ri

= − 1
Z e

He–nuc

 A∑
j=1

d j
N β Σj

 ·

(
Z∑

i=1

∇iA0

)
= − 1

Z e

 A∑
j=1

Z∑
i=1

d j
N β Σj ·∇i , He–nuc



= − 1
Z e

 A∑
j=1

Z∑
i=1

d j
N β Σj ·∇i , H0 − H int

e − H int
nuc





Use:
Z∑

i=1

[d j
N β Σj ·∇i , H int

e ] =
Z∑

i=1

d j
N β Σj · [∇i , H int

e ] = 0

and

nuc 〈g.s.|[d j
N β Σj ·∇i , H int

nuc]|g.s.〉nuc = nuc 〈g.s.|[d j
N β Σj , H int

nuc]|g.s.〉nuc ·∇i

= 0

and note that commutator with H0 adds a factor Eg.s. − En so that
you can use closure to sum over excited states. Get

∆E(2) =
1
Z
〈g.s|

 A∑
j=1

Z∑
i=1

d j
N β Σj ·∇i

 ,

Z∑
k=1

rk · Eext

 |g.s.〉

=〈g.s.|
A∑

j=1

d j
N β Σj |g.s.〉 · Eext

= −∆E(1)



Why Aren’t Electron EDMs Shielded?

nuc 〈g.s.|[d j
N β Σj ·∇i , H int

nuc]|g.s.〉nuc = 0

but if j labels electrons instead of nucleons

〈n|[d j
e β Σj ·∇i , H int

e ]|g.s.〉 6= 0 .

Why?

Because βΣ does not commute with α · p, which is in free Dirac
Hamiltonian. Doesn’t matter for nucleons because expectation
value is all that occurs, and it is killed by commutator with
Hamiltonian.

Reason only expectation value occurs for nucleons: Gradient acts
on electrons, leaving positive-parity nuclear operator βΣ, which
cannot excite states of opposite parity. But those are needed
because deexcitation is by negative-parity operator

∑
k

Rk · E .

Differences are due to monopole approximation for He−nuc, i.e.
point-like approximation for nucleus.



THE END


