

First Order Relativistic Three-Body Scattering

Ch. Elster T. Lin, W. Polyzou W. Glöckle

4/3/2007

Supported by: U.S. DOE, NERSC, OSC

3 Nucleons: Binding Energy of ³H

NN Model	E _t [MeV]
Nijm I	-7.73
Nijm II	-7.64
AV18	-7.65
CD-Bonn	-8.00
Experiment	-8.48

Discrepancy in E_t :

3NF Relativistic Effects

Total Cross Section for Neutron-Deuteron Scattering

Three Nucleon Observables:

- Three-Body Forces:
 - Needed to get the binding energies of ³H and ³He
 - General practice:
 - Model for 3N force (TM' and Urbana most common)
 - Adjust parameters to fit ³H
 - Describe <u>bulk properties</u> (bound states & cross sections) Reasonably well

- χ PT: up to N⁴LO 2N & 3N forces consistent
- Relativistic Effects:
 - Bound state: Effect ~ 0.5 MeV & sign under debate
 - Scattering

Relativistic Effects at higher energies: What is necessary?

3N and 4N systems:

- standard treatment based on pw projected momentum space successful (3N scattering up to ≈250 MeV) but rather tedious
- 2N: j_{max} =5, 3N: J_{max} =25/2 \rightarrow 200 `channels'
- Computational maximum today:
- 2N: j_{max}=7, 3N: J_{max}=31/2

 \Rightarrow Solution: NO partial waves

Example: NN scattering

Roadmap for 3N problem without PW Scalar NN model | Realistic NN Model

- NN scattering + bound state
- 3N bound state
- 3N bound state + 3NF
- 3N scattering:
- Full Faddeev Calculation
 - Elastic scattering
 - Below and above break-up
 - Break-up

Relativistic Calculation

- NN scattering + deuteron
 - Potentials AV18 and Bonn-B
- Break-up in first order:
 - (p,n) charge exchange

- Relativistic kinematics

- Max. Energy 500 MeV

- Full Faddeev Calculation
 - NN interactions
 - High energy limits

Three-Body Scattering - General

Initial channel state

$$\left| \vec{\mathbf{q}}_{0} \boldsymbol{\varphi}_{d} \right\rangle \equiv$$

$$\begin{array}{c}1\\2\\3\end{array}$$

- Transition operators
 - elastic scattering

Three-Body Scattering - General

Transition operator for elastic scattering

$$U = PG_0^{-1} + P\underline{t}G_0U$$

Transition amplitude

$$T = tP + tG_0PT$$

Faddeev Eq.

• Break-up operator

$$U_0 = (1+P) tG_0 U$$

= (1+P) T

Here: Consider Spinless Interaction

Faddeev Equation for 3N Scattering

$$T = tP + tG_0PT$$

NN t-matrix

Free 3N Propagator Nasty Singularity Structure: "Moving Singularities"

• Multiple Scattering Series:

$$T = tP + tG_0PtP + \cdots$$

 $P = P_{12} P_{23} + P_{13} P_{23} \equiv Permutation Operator$

1st Order in tP

3-Body Transition Amplitude (NR)

 $\mathbf{p} = \frac{1}{2} \left(\mathbf{k}_2 - \mathbf{k}_3 \right)$

 $\mathbf{q} = \frac{2}{3} \left(\mathbf{k}_1 - \frac{1}{2} (\mathbf{k}_2 + \mathbf{k}_3) \right)$

р

 \mathbf{k}_{2}

$$T |\mathbf{q}_{0}\varphi_{d}\rangle = tP |\mathbf{q}_{0}\varphi_{d}\rangle + tG_{0}PT |\mathbf{q}_{0}\varphi_{d}\rangle$$

The Faddeev Equation in momentum space by using Jacobi Variables

$$\langle pq | \hat{T} | q_0 \varphi_d \rangle = \varphi_d (q + \frac{1}{2} q_0) \hat{t}_s (p, \frac{1}{2} q + q_0, E - \frac{3}{4m} q^2)$$

+
$$\int d^3 q'' \frac{\hat{t}_s (p, \frac{1}{2} q + q'', E - \frac{3}{4m} q^2)}{E - \frac{1}{m} (q^2 + q''^2 + q \cdot q'') + i\varepsilon} \frac{\langle q + \frac{1}{2} q'', q'' | \hat{T} | q_0 \varphi_d \rangle}{E - \frac{3}{4m} q''^2 - E_d + i\varepsilon}$$

 $\hat{t}_s \equiv$ symmetrized 2-body t-matrix

Variables for 3D Calculation

3 distinct vectors in the problem: $\mathbf{q}_0 \mathbf{q} \mathbf{p}$

5 independent variables:

$$p = |\mathbf{p}|$$
, $q = |\mathbf{q}|$

 $x_p = \hat{\mathbf{p}} \cdot \hat{\mathbf{q}}_0 , x_q = \hat{\mathbf{q}} \cdot \hat{\mathbf{q}}_0$ $x_{pq}^{q_0} = (\mathbf{q}_0 \times \mathbf{q}) \cdot (\mathbf{q}_0 \times \mathbf{p})$

q system : **z** || **q** q₀ system : **z** || **q**₀ Variables invariant under rotation:

freedom to choose coordinate system for numerical calculation

Elastic Scattering: $T |\phi\rangle = tP |\phi\rangle + tG_0 PT |\phi\rangle$ (nonrelativistic)

1st order

rescattering

All calculations use a

Malfliet-Tjon type potential

Comparison with Realistic NN Potential in first order (NR)

495 MeV, θ=18°

Relativistic Faddeev Calculations

- Context: Poincarė Invariant Quantum Mechanics
 - Poincarė invariance is exact symmetry, realized by a unitary representation of the Poincarė group on a fewparticle Hilbert space
 - Instant form
 - Faddeev equations same operator form but different ingredients
- Kinematics
 - Lorentz transformations between frames
- Dynamics
 - Bakamjian-Thomas Scheme: Mass Operator M=M₀+V
 - Interaction embedded in 3-body space

$$V \equiv \sqrt{M^{2} + q^{2}} - \sqrt{M_{0}^{2} + q^{2}}$$

Relativistic Kinematics: Phase Space Factors

$$\sigma_{el} = (2\pi)^4 \int d\Omega \frac{E_n^2(q_0)E_d^2(q_0)}{W} |\langle \varphi_d \hat{q} q_0 | U | \varphi_d q_0 \rangle|^2$$
NR: $(2m/3)^2$

$$W = \sqrt{4(m^2 + p^2) + q^2} + \sqrt{m^2 + q^2} \equiv \text{Invariant Mass}$$

$$\frac{(2\pi)^4}{3} \frac{E_n(q_0)E_d(q_0)}{q_0W} \int d\Omega_p d\Omega_q dq \frac{p_u q^2}{4} \sqrt{4(m^2 + p_u^2) + q^2} |\langle \phi_0 | U_0 | \varphi_d q_0 \rangle|^2}{|p_u| = 1/2\sqrt{W^2 - 3m^2 - 2W\sqrt{m^2 + q^2}}}$$

$$\sigma_{br}^{NR} = \frac{(2\pi)^4}{3} \frac{m^2}{3q_0} \int d\Omega_p d\Omega_q dq q^2 \sqrt{mE_{cm} - \frac{3}{4}q^2} |\langle \phi_0 | U_0 | \varphi_d q_0 \rangle|^2$$

 $\sigma_{\scriptscriptstyle br}$ =

Kinematics: Poincaré-Jacobi momenta

• Nonrelativistic (Galilei)

$$p = \frac{1}{2}(k_2 - k_3)$$

$$q = \frac{2}{3}(k_1 - \frac{1}{2}(k_2 + k_3))$$

• Relativistic (Lorentz)

$$p = \frac{1}{2}(\mathbf{k}_{2} - \mathbf{k}_{3}) + \frac{\mathbf{k}_{2} + \mathbf{k}_{3}}{2m_{23}} \left(\frac{(\mathbf{k}_{2} - \mathbf{k}_{3}) \cdot (\mathbf{k}_{2} + \mathbf{k}_{3})}{(E_{2} + E_{3}) + m_{23}} - (E_{2} - E_{3}) \right)$$

$$q = \mathbf{k}_{1} + \frac{\mathbf{K}}{M} \left(\frac{\mathbf{k}_{1} \cdot \mathbf{K}}{E + M} - E_{1} \right)$$

$$E = E_{1} + E_{2} + E_{3}$$

$$\begin{array}{rcl} \mathbf{K} &=& \mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 \\ M &=& \sqrt{E^2 - \mathbf{K}^2} \\ m_{23} &=& \sqrt{(E_2 + E_3)^2 - (\mathbf{k}_2 + \mathbf{k}_3)^2} \end{array}$$

Kinematics: Poincaré-Jacobi Coordinates

3N c.m. frame: k_1, k_2, k_3 with $k_1 + k_2 + k_3 = K = 0$

Poincarė-Jacobi Coordinates:

$$q = k_{1}$$

$$p = \frac{1}{2}(k_{2} - k_{3}) - \frac{1}{2}(k_{2} + k_{3}) \left(\frac{E_{2} - E_{3}}{E_{2} + E_{3} + \sqrt{(E_{2} + E_{3})^{2} - (k_{2} + k_{3})^{2}}} \right)$$

$$|k_{1}k_{2}k_{3}\rangle = \left| \frac{\partial(Kpq)}{\partial(k_{2}k_{3})} \right|^{\frac{1}{2}} |Kpq\rangle = \frac{E(p)[E(k_{2}) + E(k_{3})]}{2E(k_{2})E(k_{3})} |Kpq\rangle$$

All expressions related to permutations much more complicated
Depend on vector variables => angle dependent

Permutation Operator: $P=P_{12}P_{23}+P_{13}P_{23}$

$$\begin{split} {}_{1} \langle \mathbf{p}' \mathbf{q}' | P | \mathbf{p}'' \mathbf{q}'' \rangle_{1} &= {}_{1} \langle \mathbf{p}' \mathbf{q}' | \mathbf{p}'' \mathbf{q}'' \rangle_{2} + {}_{1} \langle \mathbf{p}' \mathbf{q}' | \mathbf{p}'' \mathbf{q}'' \rangle_{3} \\ &= \hat{N}(\mathbf{q}', \mathbf{q}'') \left[\delta \left(\mathbf{p}' - \mathbf{q}'' - \frac{1}{2} \mathbf{q}' \underline{C}(\mathbf{q}'', \mathbf{q}') \right) \delta \left(\mathbf{p}'' + \mathbf{q}' + \frac{1}{2} \mathbf{q}'' \underline{C}(\mathbf{q}', \mathbf{q}'') \right) \\ &+ \delta \left(\mathbf{p}' + \mathbf{q}'' + \frac{1}{2} \mathbf{q}' \underline{C}(\mathbf{q}'', \mathbf{q}') \right) \delta \left(\mathbf{p}'' - \mathbf{q}' - \frac{1}{2} \mathbf{q}'' \underline{C}(\mathbf{q}', \mathbf{q}'') \right) \right] \end{split}$$

 $q' = 0.65 \, \text{GeV}$

Permutation Operator: $P=P_{12}P_{23}+P_{13}P_{23}$ Explicit expressions:

$$\hat{N}(\mathbf{q}^{2},\mathbf{q}'') = \frac{(E(\mathbf{q}') + E(\mathbf{q}' + \mathbf{q}''))(E(\mathbf{q}'') + E(\mathbf{q}' + \mathbf{q}''))}{4E^{2}(\mathbf{q}' + \mathbf{q}'')} \times \frac{\sqrt{(E(\mathbf{q}') + E(\mathbf{q}' + \mathbf{q}''))^{2} - \mathbf{q}''^{2}}\sqrt{(E(\mathbf{q}'') + E(\mathbf{q}' + \mathbf{q}''))^{2} - \mathbf{q}'^{2}}}{4E(\mathbf{q}')E(\mathbf{q}'')}$$

$$C(\mathbf{q}',\mathbf{q}'') = 1 + \frac{E(\mathbf{q}') - E(\mathbf{q}' + \mathbf{q}'')}{E(\mathbf{q}'') + E(\mathbf{q}' + \mathbf{q}'') + \sqrt{(E(\mathbf{q}') + E(\mathbf{q}' + \mathbf{q}''))^2 - \mathbf{q}''^2}}$$

Kinematic Relativistic Effects:

- Lorentz transformation Lab \rightarrow c.m. frame (3-body)
- Phase space factors in cross sections
- Poincarė-Jacobi momenta
- Permutations

Quantum Mechanics

Galilei Invariant:

$$H = \frac{K^2}{2M_g} + h$$
 ; $h = h_0 + V_{NR}$

Poincaré Invariant:

$$H = \sqrt{K^2 + M^2}$$
; $M = M_0 + V_{12} + V_{23} + V_{31}$

$$V_{ij} = M_{ij} - M_0 = \sqrt{(m_{0,ij} + v_{ij})^2 + q_k^2} - \sqrt{m_{0,ij}^2 + q_k^2}$$

Two-body interaction embedded in the 3-particle Hilbert space

$$m_{0,ij} = \sqrt{m_i^2 + p_{ij}^2} + \sqrt{m_j^2 + p_{ij}^2}$$
$$M_0 = \sqrt{m_{0,ij}^2 + q_k^2} + \sqrt{m_k^2 + q_k^2}$$

<u>Two-Body Input: T₁-operator embedded in 3-body system</u>

$$T_{1}(\mathbf{p}',\mathbf{p};\mathbf{q}) = V(\mathbf{p}',\mathbf{p};\mathbf{q}) + \int d^{3}k'' \frac{V(\mathbf{p}',\mathbf{k}'';\mathbf{q})T_{1}(\mathbf{k}'',\mathbf{p};\mathbf{q})}{\sqrt{(2E(p'))^{2} + q^{2}} - \sqrt{(2E(k''))^{2} + q^{2}} + i\varepsilon}$$

Potential:

$$V = \sqrt{(2\sqrt{m^2 + \mathbf{p}^2} + v)^2 + \mathbf{q}^2 - \sqrt{4(m^2 + \mathbf{p}^2) + \mathbf{q}^2}}$$

→ 2-body potential in c.m. frame

Attempt via spectral expansion in

Kamada, Glöckle, Golak, Elster, PRC66 044010 (2002).

Hard to compute !

Comment: *works – BUT not well enough*

New Suggestions Kamada-Glöckle nucl-th/0703010:

Solve for V numerically via iteration --- not tested in 3N calculation

Instead:

- Obtain fully off-shell matrix elements T₁(k,k',W) from half shell transition matrix elements by
- Solving a 1st resolvent type equation

 $T_{1}(W) = T_{1}(W') + T_{1}(W) [g_{0}(W) - g_{0}(W')] T_{1}(W')$

- For every single off-shell momentum point
- Proposed in
 - Keister & Polyzou, PRC 73, 014005 (2006)
- Carried out for the first time now

Obtain embedded 2N t-matrix $T_1(k,k',W)$:

$$\langle \mathbf{k} | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle = \langle \mathbf{k} | V(\mathbf{q}) | \mathbf{p}'^{(-)} \rangle$$

$$= \frac{2(E_{k'} + E_k)}{\sqrt{4E_{k'}^2 + \mathbf{q}^2} + \sqrt{4E_k^2 + \mathbf{q}^2}} t(\mathbf{k}, \mathbf{k}'; 2E_{k'})$$

$$t(\mathbf{k}, \mathbf{k}'; 2E_{k'}) = v(\mathbf{k}, \mathbf{k}') + \int d\mathbf{k}'' \frac{v(\mathbf{k}, \mathbf{k}'')t(\mathbf{k}'', \mathbf{k}'; 2E_{k'})}{E_{k'} - 2\sqrt{m^2 + k''^2} + i\epsilon}$$

Solution of the relativistic 2N LS equation with 2-body potential

Explicit Equation for T₁

$$\begin{aligned} \langle \mathbf{k} | T_1(\mathbf{q}; z) | \mathbf{k}' \rangle &= \langle \mathbf{k} | T_1(\mathbf{q}; z' | \mathbf{k}' \rangle - \\ \int d\mathbf{k}'' \ \langle \mathbf{k} | T_1(\mathbf{q}; z) | \mathbf{k}'' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} - \frac{1}{z' - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big) \Big| \mathbf{k}'' \rangle \Big(\frac{1}{z - \sqrt{4(m^2 + \mathbf{k}''^2) + \mathbf{q}^2}} \Big) \langle \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big| \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big| \mathbf{k}'' | T_1(\mathbf{q}; z') | \mathbf{k}' \rangle \Big| \mathbf{k}'' | \mathbf{$$

where $T_1(z')$ is taken to be right half-shell with $z' = \sqrt{4(m^2 + {\bf k}'^2) + {\bf q}^2} + i\epsilon$

Approximations to the "boosted" potential

$$V = \sqrt{(2\sqrt{m^2 + \mathbf{p}^2} + v)^2 + \mathbf{q}^2 - \sqrt{4(m^2 + \mathbf{p}^2) + \mathbf{q}^2}}$$

 $V_{0}(\mathbf{p}, \mathbf{p}', \mathbf{q}) = v(\mathbf{p}, \mathbf{p}')$ relativistic interaction in the c.m. frame $V_{1}(\mathbf{p}, \mathbf{p}', \mathbf{q}) = v(\mathbf{p}, \mathbf{p}') \left[1 - \frac{\mathbf{q}^{2}}{8m^{2}} \right]$ $V_{2}(\mathbf{p}, \mathbf{p}', \mathbf{q}) = v(\mathbf{p}, \mathbf{p}') \left[1 - \frac{\mathbf{q}^{2}}{8E(\mathbf{p})E(\mathbf{p}')} \right]$

Remark to calculations:

The relativistic potential v(p,p') is phase-shift equivalent to the nonrelativistic potential

Details on this issue later!!

Deuteron Binding Energy

$$\Phi_d(\mathbf{k}) = \frac{1}{\sqrt{M_d^2 + \mathbf{q}^2} - \sqrt{2E_{k_m}^2 + \mathbf{q}^2}} \int d\mathbf{k}' \ V(\mathbf{k}, \mathbf{k}'; \mathbf{q}) \Phi_d(\mathbf{k}').$$

Total Cross Section for Elastic Scattering

Elastic Scattering: Differential Cross Section

Inclusive Scattering

Measured: Energy of one ejected particle as function of angle

Inclusive Breakup Scattering @ Elab=500 MeV

Exclusive Breakup Scattering

Exclusive Breakup Cross Section - QFS

Elab = 500 MeV: $x_q = -1, x_p = 1, \phi_{pq} = 0$

 $x_q = 1$ $x_p = 0$ $\phi_{pq} = 0$

 $x_q = \sqrt{3/2}$ $x_p = -0.5$ $\phi_{pq} = 0$

 $x_p = -0.25$ $x_q = -0.9$ $\phi_{pq} = 0$

Consideration for two-body t-matrix

- Relativistic and non-relativistic t-matrix should give identical observables for determining relativistic effects
- Or two-body t-matrices should be phase-shift equivalent
- Four options:
 - Start from relativistic LS equation (natural option)
 - If non-relativistic LS equation is used:
 - Refit of parameters (maybe time consuming in practice)
 - Transformation of Kamada-Glöckle PRL 80, 2547 (1998)
 - Transformation of Coester-Piper-Serduke as given in Polyzou PRC 58, 91 (1998)

Kamada-Glöckle (KG)

 Unitary rescaling of momentum variables to change the nonrelativistic kinetic energy into the relativisitic kinetic energy:

$$2m + \frac{q^2}{m} = 2\sqrt{m^2 + k^2}$$

$$h^{2}(q) \equiv \frac{q^{2}}{k^{2}} \frac{dq}{dk} \implies \langle k' | v_{R} | k \rangle = h(k') \langle q(k') | v_{NR} | q(k) \rangle h(k)$$

- Relativistic and nonrelativistic phase shifts are functions of invariant energy E
- Relativistic and nonrelativistic bound states have identical binding energy.

Coester-Piper-Serduke (CPS) (PRC11, 1 (1975))

• Add interaction to square of non-interacting mass operator k^2

$$M^{2} = M_{0}^{2} + u = 4mh \quad \text{with} \quad h \equiv \frac{k^{2}}{m} + \frac{u}{4m} + m$$
$$u = v^{2} + \left\{ M_{0}^{2}, v \right\}$$

- NO need to evaluate v directly, since M, M², h have the same eigenstates
- Relation between half-shell t-matrices

$$\left\langle k' \left| t_R(e(k)) \right| k \right\rangle = \frac{4m}{e(k) + e(k')} \left\langle k' \left| t_{NR}(k'/m) \right| k \right\rangle$$

 Relativistic and nonrelativistic cross sections are identical functions of the invariant momentum k

Total Cross Section Elastic Scattering

Inclusive Breakup @ 200 MeV

Inclusive Breakup @ 500 MeV

Relativistic 1st Order Faddeev Calculations

- Kinematics
 - Phase space factors
 - Lorentz Transformation from Lab to c.m. frame
 - Above determines shifts of peaks
 - Lorentz Transformation of Jacobi Coordinates
 - Always reduces effects of phase space factors
- Dynamics
 - Exact calculation of the two-body interaction embedded in the three-particle Hilbert space
 - Approximation V_2 quite good up to ~ 500 MeV
 - Observables show some sensitivity to the construction of the phase-shift equivalent relativistic interaction.

Roadmap - Summary

For higher energies : NO partial waves

- Solve Faddeev equation for 3-particle scattering in vector variables
- Investigate convergence of multiple scattering series as function of energy for different observables and configuarations

1st Order Relativistic Faddeev in tP

Calculations at intermediate energy show that relativistic effects are quite visible.

1st Order = Born term determines kernel of Faddeev Eq.

To Do: Full Solution - Computer Power