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3 Nucleons:  Binding Energy of 3H

NN Model          Et [MeV]

Nijm I                 -7.73

Nijm II                -7.64

AV18                  -7.65

CD-Bonn            -8.00

Experiment         -8.48

Discrepancy in Et : • 3NF
• Relativistic Effects



W.P. Abfalterer et al, PRL 81, 57 (1998)



Three  Nucleon Observables:

• Three-Body Forces:
– Needed to get the binding energies of 3H and 3He

– General practice:
• Model for 3N force (TM’ and Urbana most common)
• Adjust parameters to fit  3H

– Describe bulk properties (bound states & cross sections) 
Reasonably well

– χPT:  up to N4LO  - 2N & 3N forces consistent

• Relativistic Effects:
– Bound state: Effect ~ 0.5 MeV &  sign under debate

– Scattering 



Relativistic Effects at higher energies:
What is necessary?

3N and 4N systems:
• standard treatment based on pw projected 

momentum space successful (3N scattering up 
to ≈250 MeV) but rather tedious

• 2N: jmax=5,   3N: Jmax=25/2  → 200 `channels’
• Computational maximum today:
• 2N: jmax=7,   3N: Jmax=31/2

⇒ Solution: NO partial waves
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Example: NN scattering

Elab= 300 MeV:

J=16 needed for 
convergence in 
cross section

Smarter: NO
partial waves



Roadmap for 3N problem without PW
Scalar NN model  | Realistic NN  Model

• NN scattering + bound state
• 3N bound state
• 3N bound state + 3NF
• 3N scattering:
• Full Faddeev Calculation

– Elastic scattering 
– Below and above break-up
– Break-up

• Relativistic Calculation
– First Order in t

• NN scattering + deuteron
– Potentials AV18 and Bonn-B

• Break-up in first order:
– (p,n) charge exchange
– Max. Energy  500 MeV
– Relativistic kinematics

• Full Faddeev Calculation
– NN interactions
– High energy limits



Three-Body Scattering - General

• Initial channel state

• Transition operators

– elastic scattering

– breakup

≡  q0 dϕ
r



Three-Body Scattering - General
• Transition operator for elastic scattering

• Transition amplitude

• Break-up operator

• Here:  Consider Spinless Interaction
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Faddeev Equation for 3N Scattering

• Multiple Scattering Series:

PTtGtPT 0  +=

NN t-matrix
Free 3N Propagator

Nasty Singularity Structure:
“Moving Singularities”

L++= PtPtGtPT 0

P = P12 P23 + P13 P23 ≡ Permutation Operator

1st Order in tP



The Faddeev Equation in momentum 
space by using Jacobi Variables
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Variables invariant under rotation: 

freedom to choose coordinate system for 
numerical calculation

q system :  z || q

q0 system : z || q0

Variables for 3D Calculation

3 distinct vectors in the problem: q0 q   p

     q  ,  p == qp

5 independent variables:

p)(qq)q(

 q̂q̂ ,  q̂p̂

00

00

0 ×⋅×=

⋅=⋅=
q
pq

qp

x

xx



Elastic Scattering:
(nonrelativistic)

rescattering

φφφ PTtGtPT 0+=

1st order

All calculations use a
Malfliet-Tjon type potential



Comparison with Realistic NN 
Potential in first order (NR)

495 MeV, θ=18o



Relativistic Faddeev Calculations

• Context: Poincarė Invariant Quantum Mechanics
– Poincarė invariance is exact symmetry, realized by a 

unitary representation of the Poincarė group on a few-
particle Hilbert space  

– Instant form
– Faddeev equations same operator form but different 

ingredients 
• Kinematics

– Lorentz transformations between frames
• Dynamics

– Bakamjian-Thomas Scheme: Mass Operator  M=M0+V
– Interaction embedded in 3-body space
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Relativistic Kinematics: Phase Space Factors
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Kinematics:  Poincaré-Jacobi momenta

• Nonrelativistic (Galilei)

• Relativistic (Lorentz)
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Kinematics: Poincaré-Jacobi Coordinates
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3N c.m. frame:   k1, k2, k3 with  k1+ k2+ k3 =  K= 0
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Poincarė-Jacobi Coordinates:

•All expressions related to permutations much more complicated

•Depend on vector variables => angle dependent 



Permutation Operator:  P=P12P23+P13P23



Permutation Operator:  P=P12P23+P13P23

Explicit expressions:
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Kinematic Relativistic Effects:

• Lorentz transformation  Lab → c.m. frame  (3-body)
• Phase space factors in cross sections
• Poincarė-Jacobi momenta
• Permutations 



Quantum Mechanics
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Galilei Invariant:

Poincaré Invariant:
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Two-body interaction embedded in the 3-particle Hilbert space



Two-Body Input: T1-operator embedded in 3-body system

Potential:

2-body potential in c.m. frame 
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Hard to compute !

Attempt via spectral expansion in

Kamada, Glöckle, Golak, Elster,  PRC66 044010 (2002).

Comment: works – BUT not well enough

New Suggestions Kamada-Glöckle nucl-th/0703010:
Solve for V numerically via iteration --- not tested in 3N calculation



Instead:

• Obtain fully off-shell matrix elements T1(k,k’,W) from 
half shell transition matrix elements by 

• Solving a 1st resolvent type equation

• For every single off-shell momentum point
• Proposed in

– Keister & Polyzou, PRC 73, 014005 (2006)
• Carried out for the first time now

T1(W) = T1(W’ ) + T1(W) [g0(W) - g0(W’ )] T1(W’ )



Obtain embedded 2N t-matrix T1(k,k’,W):

Solution of the relativistic 2N LS equation with 2-body potential



Explicit Equation for T1



Approximations to the  “boosted” potential

relativistic interaction in the c.m. frame

Remark to calculations:

The relativistic potential  v(p,p’) is phase-shift 
equivalent to the nonrelativistic potential

Details on this issue later!!



Deuteron Binding Energy 



Total Cross Section for Elastic Scattering



Elastic Scattering: Differential Cross Section



Inclusive Scattering

Measured:   Energy of one ejected particle as 
function of angle



Inclusive
Breakup
Scattering 





Inclusive Breakup 
Scattering

@ Elab=500 MeV



Inclusive Breakup 
Scattering

@ Elab=495 MeV



Inclusive Breakup 
Scattering



Exclusive Breakup Scattering



Exclusive Breakup Cross Section  - QFS

Elab = 500 MeV:  xq = -1, xp = 1, φpq = 0



xp = -0.25

xq = -0.9

φpq = 0

xq= 1

xp= 0

φpq= 0

xq= √3/2
xp= -0.5
φpq= 0



Consideration for two-body t-matrix

• Relativistic and non-relativistic t-matrix should give 
identical observables for determining relativistic 
effects

• Or two-body t-matrices should be phase-shift 
equivalent

• Four options:
– Start from relativistic LS equation  (natural option)
– If non-relativistic LS equation is used:
– Refit of parameters (maybe time consuming in practice)
– Transformation of Kamada-Glöckle PRL 80, 2547 (1998)
– Transformation of Coester-Piper-Serduke as given in 

Polyzou PRC 58, 91 (1998)



Kamada-Glöckle (KG)

• Unitary rescaling of momentum variables to change 
the nonrelativistic kinetic energy into the relativisitic
kinetic energy:

• Relativistic and nonrelativistic phase shifts are functions of 
invariant energy E

• Relativistic and nonrelativistic bound states have identical 
binding energy. 
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Coester-Piper-Serduke (CPS)
(PRC11, 1 (1975))

• Add interaction to square of non-interacting mass 
operator

• NO need to evaluate v directly, since M, M2, h have the same 
eigenstates

• Relation between half-shell t-matrices

• Relativistic and nonrelativistic cross sections are identical 
functions of the invariant momentum k
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Total Cross Section Elastic Scattering



Inclusive Breakup @ 200 MeV

36 deg 24 deg



Inclusive Breakup @ 500 MeV

12 deg 24 deg



Relativistic 1st Order Faddeev Calculations

• Kinematics
– Phase space factors
– Lorentz Transformation from Lab to c.m. frame

• Above determines shifts of peaks
– Lorentz Transformation of Jacobi Coordinates

• Always reduces effects of phase space factors

• Dynamics
– Exact calculation of the two-body interaction embedded in 

the three-particle Hilbert space
– Approximation V2 quite good up to ~ 500 MeV
– Observables show some sensitivity to the construction of the 

phase-shift equivalent relativistic interaction.



Roadmap - Summary

For higher energies :  NO partial waves
– Solve Faddeev equation for 3-particle scattering in vector 

variables
– Investigate convergence of multiple scattering series as function 

of energy for different observables and configuarations

1st Order Relativistic Faddeev in tP
– Calculations at intermediate energy show that relativistic 

effects are quite visible.
– 1st Order = Born term determines kernel of Faddeev Eq.


