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Overview
• Atoms as probes of fundamental interactions

• atomic electric dipole moments (EDMs)
• Nuclear Schiff moment
• atomic parity violation (APV)

- nuclear weak charge
- nuclear anapole moment 

• High-precision atomic many-body calculations
• EDMs of diamagnetic atoms
• Strong enhancement of SM in deformed nuclei
• Strong enhancement of EDMs and APV due to 

close levels of opposite parity: Ra, Rare Earth
• APV in Cs, QED corrections
• Summary



Atoms as probes of fundamental interactions

• T,P and P-odd effects in atoms are strongly 
enhanced:

• Z3 or Z2 electron structure enhancement (universal)
• Nuclear enhancement (mostly for non-spherical nuclei)

• Close levels of opposite parity
• Collective enhancement
• Octupole deformation

• Close atomic levels of opposite parity (mostly for excited states)

• A wide variety of effects can be studied:

Schiff moment, MQM, nucleon EDM, e- EDM via atomic EDM
QW , Anapole moment via E(PNC) amplitude



Atomic EDMs
Best limits
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fundamental CP-violating phases

neutron EDM

EDMs of diamagnetic 
systems  (Hg)

EDMs of paramagnetic 
systems  (Tl)

Schiff moment

nucleon
level

quark/lepton
level

nuclear
level

atomic
level

Leading mechanisms for EDM 
generation

|d(199Hg)| < 2.1 x 10-28 e cm
(95% c.l.,  Seattle, 2001)

|d(205Tl)| < 9.6 x 10-25 e cm
(90% c.l.,  Berkeley, 2002)

|d(n)| < 2.9 x 10-26 e cm
(90% c.l., Grenoble, 2006)



• Excellent way to search for new sources of CP-violation is 
by measuring EDMs
– SM EDMs are hugely suppressed

Theories that go beyond the SM predict EDMs that are many orders 
of magnitude larger!

Theory de (e cm)
Std. Mdl. < 10-38

SUSY 10-28 - 10-26

Multi-Higgs 10-28 - 10-26

Left-right 10-28 - 10-26

• Atomic EDMs datom ∝ Z2 , Z3 [Sandars]

Sensitive probe of physics beyond the Standard Model!

Best limit  (90% c.l.):         |de | < 1.6 ×

 

10-27 e cm Berkeley (2002)

e.g.  electron EDM [Commins ]



Schiff moment
SM appears  when screening of external electric field by atomic electrons is 

taken into account.
Nuclear T,P-odd moments:
• EDM – non-observable due to total screening
• Electric octupole moment – modified by screening
• Magnetic quatrupole moment – not significantly affected 
Nuclear electrostatic potential with screening:

d is nuclear EDM, the term with d is the electron screening term
ϕ(R) in multipole expansion is reduced to 

where                                            is Schiff moment..

This expression is not suitable for relativistic calculations.
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Electric field induced
by T,P-odd nuclear
forces which influence
proton charge density:

This potential has no singularities and may be used in relativistic calculations
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Relativistic corrections originating from electron wave functions can be 
incorporated into Local Dipole Moment (L)
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SM electric field polarizes an atom and produces the EDM

Nuclear spin
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Atomic parity violation
• Dominated by Z-boson exchange 

between electrons and nucleons
Z

e e

n n
H = G

2
C1pe γμγ5ep γμ p+ C1ne γμγ5en γμn[ ]

• In atom with Z electrons and N neutrons obtain effective 
Hamiltonian parameterized by “nuclear weak charge” QW

C1p = 1
2 1− 4sin2 θW( )   ;   C1n = − 1

2Standard model tree-level couplings:

hPV = G
2 2

QW ρ(r)γ5

QW = 2(NC1n + ZC1p ) ≈ −N + Z(1− 4 sin2 θW ) ≈ −N

• APV amplitude   EPV ∝ Z3                        [Bouchiat,Bouchiat]

Clean test of standard model via atomic experiments!



Nuclear anapole moment
• Source of nuclear spin-dependent PV effects in atoms

• Nuclear magnetic multipole violating parity

• Arises due to parity violation inside the nucleus
• Interacts with atomic electrons 

via usual magnetic interaction 
(PV hyperfine interaction):

 ha =e
r 
α ⋅

r 
A ∝κa

r 
α ⋅

r 
I ρ(r) ,    κa ∝A2 3

[Flambaum,Khriplovich,Sushkov]

EPV ∝ Z2 A2/3 measured as difference of PV effects for 
transitions between hyperfine components

B

j a

• Boulder Cs: g= 6(1) ( in units of Fermi constant )
• Seattle Tl:    g=-2(3)



Atomic calculations

• APV

• Atomic EDM

HPV is due to electron-nucleon P-odd interactions, 
HPT is due to nucleon-nucleon, electron-nucleon PT-odd interactions,
electron, proton or neutron EDM. 

Atomic wave functions need to be good at all distances!

We check the quality of our wave functions by calculating:
- hyperfine structure constants and isotope shift
- energies
- E1 transition amplitudes

and comparing to measured values… there are also other checks!
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Ab initio methods of atomic 
calculations

Nve Method Accuracy

0 RHF+RPA ~ 10%

1 Correlation potential (Σ) 0.1-1%

2-8 CI+MBPT 1-10%

2-15 Configuration interaction 10-20%

Nve - number of valence electrons

These methods cover all periodic table of elements



Correlation potential method 

• Zeroth-order: relativistic Hartree-Fock. Perturbation theory in 
difference between exact and Hartree-Fock Hamiltonians.

• Correlation corrections accounted for by inclusion of a 
“correlation potential” Σ:

• External fields included using Time-Dependent 
Hartree-Fock (RPAE core polarization)+correlations

Σ
 
= +

VHF → VHF + Σ

In the lowest order Σ
 

is given by: 

[Dzuba,Flambaum,Sushkov (1989)]



The correlation potential

+ + +…

1. electron-electron screening

Use the Feynman diagram technique to include three 
classes of diagrams to all orders:

Electric field in cesium
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The correlation potential

2. hole-particle interaction

+ + + +…

3. nonlinear-in-Σ
 

corrections

+ +Σ ΣΣΣΣΣ +…

+ + +…

1. electron-electron screening

Use the Feynman diagram technique to include three 
classes of diagrams to all orders:



Matrix elements: <ψa |h+δV+δΣ|ψb >
ψa,b - Brueckner orbitals: (HHF –εa +Σ)ψa =0
h – External field

<ψa |δV|ψb > - Core polarization

<ψa |δΣ|ψb > - Structure radiation

Example: PNC  E(6s-7s) in 133 Cs [ 10-11ieaB (-QW /N) ]

EPNC = 0.91(1) (Dzuba, Sushkov, Flambaum,  1989)
EPNC = 0.904(5) (Dzuba, Flambaum, Ginges, 2002)



Atoms with several valence electrons: 
CI+MBPT

CI Hamiltonian: Σi hi + Σi<j e2/rij

h = cαp +(β-1)mc2 –Ze2/r + Vcore

CI+MBPT Hamiltonian:
h -> h + Σ1

 

;
 

e2/rij  -> e2/rij + Σ2

Σ1

 

:

Σ2

 

:

[Dzuba, Flambaum, Kozlov (1996)]

MBPT is used to 
calculate core-valence

correlation operator Σ(r,r’,Ε)
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Wave functions

are found by solving matrix eigenvalue problem

Then standard CI technique is used:

Matrix elements are found by 

Example: EDM of Hg



EDM for closed-shell atoms 
(Xe, Hg, Ra, Yb) 
(due to Schiff moment)

datom (1) = 2
1 Dz N N HPT 1

E1 − ENN
∑

RHF + TDHF (for core polarization):

= Dz
= HPT = Coulomb interaction

Hg, Ra, Yb can also be treated as 2-valence electrons atoms by the CI+MBPT
The results for EDM are close to the RHF + TDHF  calculations



EDMs of atoms of experimental interest

Z Atom [S/(e fm3)]e cm [10-25 η]
 

e cm Expt.

2 3He 0.00008 0.0005

54 129Xe 0.38 0.7 Seattle, Ann Arbor, 
Princeton

70 171Yb -1.9 3 Bangalore,Kyoto

80 199Hg -2.8 4 Seattle

86 223Rn 3.3 3300 TRIUMF

88 225Ra -8.2 2500 Argonne,KVI

88 223Ra -8.2 3400

dn = 5 x 10-24 e cm η,  d(3He)/ dn = 10-5



Limits on the P,T-violating parameters in the hadronic sector 
extracted from Hg compared to the best limits from other 

experiments

P,T-odd term Value Experiment

neutron EDM dn

[10-26 e cm]
Hg
n
n
n

Seattle, 2001
ILL, 2006
ILL, 1999
PNPI, 1996

proton EDM dp

[10-24 e cm]
Hg
TlF

Seattle, 2001
Yale, 1991

Hg Seattle, 2001

QCD phase θ
[10−10]

Hg
n
n

Seattle, 2001 
ILL, 1999
PNPI, 1996

)4.59.1( ±

)6817( ±±

)6.10.46.2( ±±

)6.08.07.1( ±±
)2817( ±

nnppGinp 52
γη 410)0.13.17.2( −×±±=npη

)4.05.01.1( ±±
)5.46.1( ±

)3.13.32.2( ±±

Best limit on atomic EDM (Seattle, 20001):
cm100.40)0.49-(1.06Hg)d( -28199 ⋅×±±= e

)7.05.12.0( ±±



Nuclear enhancement 
(Auerbach, Flambaum, Spevak (1996))

The strongest enhancement is due to octupole deformation 
(Ba-Sm; Ra-Th)

3520
9 323

intr π
ββ

NeZRS ≈

2.02 ≈β

1.03 ≈β - octupole deformation

- quadrupole deformation

Intrinsic Schiff moment:

No T,P-odd forces are needed for the Schiff moment in intrinsic
reference frame
However, in laboratory frame S=0 due to rotation
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Two factors of enhancement:
1. Large collective moment in the body frame
2. Small energy interval (E+ -E- )
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Engel, Friar, Hayes (2000); Flambaum, Zelevinsky (2003):
Static octupole deformation is not essential, nuclei with soft  octupole 
vibrations also have the enhancement.



Extra enhancement in excited states: Ra

• Extra enhancement for EDM and 
APV in metastable states due to 
presence of close opposite parity 
levels
[Flambaum; Dzuba,Flambaum,Ginges]

d(3D2 )  ∼

 

105 ×

 

d(Hg)

EPV (1S0 -3D1,2 ) ∼

 

100 ×

 

EPV (Cs)
7s2 1S0

3D2
3P1

ΔE=5 cm-1

3D1

3P0

7s6p7s6d

EPV (QW )
EPV (κa )

datom (1) = 2
1 Dz N N HPT 1

E1 − ENN
∑



• Extra enhancement for EDM and 
APV in metastable states due to 
presence of close opposite parity 
levels
[Flambaum; Dzuba,Flambaum,Ginges]

d(3D2 )  ∼

 

105 ×

 

d(Hg)

EPV (1S0 -3D1,2 ) ∼

 

100 ×

 

EPV (Cs)
7s2 1S0

3D2
3P1

ΔE=5 cm-1

3D1

3P0

7s6p7s6d

EPV (QW )
EPV (κa )

Good to study anapole moment:
• Strongly enhanced (EPV ~ 103 EPV (Cs))
• QW does not contribute (ΔJ = 2)

datom (1) = 2
1 Dz N N HPT 1

E1 − ENN
∑

Extra enhancement in excited states: Ra



Close states of opposite parity in Rare-Earth 
atoms

Z Atom Even Odd ΔE 
[cm-1]

ΔJ What

60 Nd II 6G11/2 6L13/2 8 1 S,M

62 SM I 4f65d6s 4f66s6p 5 0 S,E,M

62 SM I 7D4
9G5 10 1 S,M

64 Gd I 11F5
9P3 0 2 A,M

66 Dy I 4f105d6s 4f106s6p 1 1 A,S,M

66 Dy I 4f105d6s 4f95d26s 0 0 A,E,S,M

67 Ho I 8K21/2 4f106s26p 10 1 S,M

S = Schiff Moment, A = Anapole moment, E = Electron EDM, 
M = Magnetic quadrupole moment



PNC in Cs
• Best measurement for cesium [Boulder ‘97]

• Atomic theory required for determination of QW

E1

Atomic theory δEPV /EPV QW -QW
SM Ref.

1% calculations 1.2σ Dzuba et al. ‘89; Blundell et al. ‘90

Reinterpretation 1% to 0.4% 2.5σ Bennett & Wieman ‘99

Breit interaction -0.6% Derevianko ‘00

Vacuum polarization +0.4% Johnson et al. ‘01; Milstein & Sushkov ‘02

Neutron distribution -0.2% Derevianko ‘02

0.5% calculations 2.1σ Dzuba, Flambaum, Ginges ’02
Kozlov, Porsev, Tupitsyn, ‘01

Self-energy and vertex 
radiative corrections -0.7%

Kuchiev & Flambaum ‘02; Milstein et al. ‘02; 
Sapirstein et al. ‘03; 

Shabaev et al. ‘05; Flambaum & Ginges ‘05

Total 1.1σ
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QED corrections to EPV in Cs
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However, this not the end of the story
A complete calculation of QED corrections to PV amplitude includes also
• QED corrections to energy levels and E1 amplitudes and 
• Many-body effects

[Flambaum,Ginges; Shabaev,Pachuki,Tupitsyn,Yerokhin] 
[Flambaum,Ginges, Dzuba] 

QED correction to weak matrix elements leading to δEPV (Kuchiev, 
Flambaum, ’02; Milstein, Sushkov, Terekhov, ’02; Sapirstein, 
Pachucki, Veitia, Cheng, ’03)

 δEPV = (0.4-0.8)% = -0.4%

brings Cs PNC to agreement with the standard model



Radiative potential for QED

)(
3
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WClfgU Φ+Φ+Φ+Φ+Φ=Φ
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3
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Φg (r)   – magnetic formfactor
Φf (r)    – electric formfactor (high frequency)
Φl (r)    – electric formfactor (low frequency)
ΦU (r)   – Uehling potential
ΦWC (r) – Wichmann-Kroll potential 

Φf (r) and Φl (r)  have free parameters which are chosen to fit QED 
corrections to the energies (Mohr, et al) and weak matrix elements
(Kuchiev,Flambaum; Milstein,Sushkov,Terekhov; Sapirstein

 

et al)



QED corrections to EPV in Cs

• QED correction to weak matrix elements leading to δEPV (Kuchiev, 
Flambaum, ’02; Milstein, Sushkov, Terekhov, ’02; 
Sapirstein, Pachucki, Veitia, Cheng, ’03)

δEPV = (0.4-0.8)% = -0.4%
• QED correction to δEPV in effective atomic potential (Shabaev

 

et 
al,

 

’05)
δEPV = (0.41-0.67)% = -0.27%

• QED corrections to E1 and ΔE in radiative potential with full 
account of many-body effects, QED corrections to weak matrix 
elements are taken from earlier works (Flambaum, Ginges, ’05)

δEPV = (0.41-0.73)%=-0.32%
• QED correction to δEPV in radiative potential with full account of 

many-body effects (Dzuba, Flambaum, Ginges, ’07)
δEPV = -0.21%
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Cs PNC: conclusion and future directions

• Cs PNC is in good agreement with the standard 
model

• Tightly constrains possible new physics,  e.g. mass 
of extra Z boson MZ’ >

 
750 GeV

• Theoretical uncertainty is now dominated by 
correlations (0.5%)

• Improvement in precision for correlation calculations 
is important. Derevianko aiming for 0.1% in Cs.

• Similar measurements and calculations can be done 
for Fr, Ba+, Ra+



Summary

• Precision atomic physics can be used to probe 
fundamental interactions

– EDMs (existing): Xe, Tl, Hg
– EDMs (new): Xe, Ra, Yb, Rn
– EDM and APV in metastable states: Ra, Rare Earth
– Nuclear anapole: Cs, Tl, Fr, Ra, Rare Earth
– APV (QW ): Cs, Fr, Ba+, Ra+

• Atomic theory provides reliable interpretation of 
the measurements
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