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a Experimental Developments
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Goals for Run Il

@ 1% precision on branching Run | Spectrum

ratio p— ———
@ Measure energy spectrum wl 1 —onpek . [

Obstacles wl 1

@ Previous run systematics i 1} A S —
limited 3 + { I Photon energy (keV) [

@ No response functions + ,}ﬁ,
previously o] 1 IAS}QH%

@ Inverse problem of extracting ke Rl e e Tl AR
spectrum from convoluted Froen ey e )

data
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Systematics

Source of Uncertainty Correction (%) Uncertainty (%)
Photon detector gain drift 6.0
Analysis cut efficiencies 5.0
Monte Carlo statistics 4.0
Photon efficiency/resolution +3.0 3.0
Beam divergence/profile 3.0
Electron bremsstrahlung -3.0 3.0
B field registration 2.0
Mirror potential registration 1.0
Electron backscattering 0.5
Electronic artifacts 0.5
Total -0.0 10.4

Radiative 3-Decay



New Hardware for Run Il

Improvements

@ 12-Element ~ Detector
Higher statistics
Different sensitivity to
correlated backgrounds

@ Improved beam optics
“Active” area smaller than
current beam

@ Rigorous calibration routines

@ Improved electronics
New Gage Octopus card
8 channels / card
Up to 125 MHz sampling
14-bit bipolar resolution

@ Bare APD?
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New Hardware for Run Il

Improvements

@ 12-Element ~ Detector
Higher statistics
Different sensitivity to
correlated backgrounds

@ Improved beam optics

“Active” area smaller than
current beam

Higher B - Field Lower B - Field
Magnitude Magnitude

The divergence of the field causes a
smaller area of the beam to be

@ Rigorous calibration routines accepted by the SBD than the area of

@ Improved electronics
New Gage Octopus card
8 channels / card
Up to 125 MHz sampling
14-bit bipolar resolution

@ Bare APD?

the SBD would suggest.
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12-Element Detector

Nearly complete!

@ 12 BGO crystals coupled to
12 APDs

@ Requires 12 independent HV
sources to individually adjust
gains

@ Each APD varies slightly

@ 12 Preamp signals coupled to
Gage Octopus cards

@ Currently doing dewar tests

Temperature stability

e Gain

e Compton

o Crosstalk noise / pickup
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Current Work Sample Trace

@ Test data being collected

@ Learning about electronics 50
e Building DAQ v
@ Benchmarking APDs fz

INEWCRAREWRITS ® rime 6>

@ Adjust baseline

Voltage (mV)

e Find peak channel Stability Test

@ Some small ripple @ Filled 5 hrs earlier

@ Histogram these peaks @ Topped off 1 hr earlier

@ Operational @ Gaussian fit to histogram

N
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Dewar Tests

ELEDRoliS

@ Test data being collected

@ Learning about electronics 3
@ Building DAQ £
@ Benchmarking APDs "

Naive Analysis RN VR

@ Adjust baseline

e Find peak channel Stability Test

@ Some small ripple @ Filled 5 hrs earlier

@ Histogram these peaks @ Topped off 1 hr earlier

@ Operational @ Gaussian fit to histogram

N
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Current Work

@ Test data being collected
@ Learning about electronics
@ Building DAQ

@ Benchmarking APDs

INEWCRAREWRITS

@ Adjust baseline

@ Find peak channel

@ Some small ripple

@ Histogram these peaks
@ Operational

N

A

Voltage (mV)

T * I * 1T &~ 1T T T 7T " T °
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Time Elapsed (Hr)

Stability Test

@ Filled 5 hrs earlier
@ Topped off 1 hr earlier
@ Gaussian fit to histogram
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Bare APD Photon Detector
_ 55Fe 5.899 keV X-Ray
At,_., histogram ]
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@ Detects lower energy (100eV High S/B in runs

nrEsnele), @ Small surface area
@ Higher rate. BR [0.10-10 keV] .
~ 6.4x10-2 (theory) @ Faster response time
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e Correlation Coefficient a
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ep Physics

@ Photon philosophy
Record first, ask questions later

@ Many ep events collected with no energetic photon recorded
@ |s there more information in our ep data?
@ Over 107 total ep events recorded
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Decay Rate

@ Unpolarized neutron decay rate (tree level)

dr

COS fey
m X ,OeEe(Eo - Ee)2 <1 aF ape—e)
e e v

Ee

@ Use Monte Carlo to integrate over all variables except E,

dar

dE, fi(Ep) + a- fa( Ep)
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Proton Energy Dependence

® fa(Ep) term has strong | (e e N e =

proton energy
dependence

@ Experiment sensitive

to proton energy can
be made sensitive to a

50 —

40 -

— G(E.)
— G(E,) p, / E cos b,

Weight Factor (arb.)

@ Electrostatic mirror 105
does this in a very o 100 200 0 400 50 w0 700
Crude faSthn ) Proton Kinetic Energy (eV) )
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Phase Space Dependence

@ Apparatus only sensitive to fraction of total available phase space
@ Changes with mirror voltage

@ Summing over proton energy yields contribution at particular
voltage

o
<

fy and f, vs. Voltage
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Phase Space Dependence

@ Apparatus only sensitive to fraction of total available phase space
@ Changes with mirror voltage

@ Summing over proton energy yields contribution at particular

voltage
200V fy and f, vs. Voltage
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Phase Space Dependence

@ Apparatus only sensitive to fraction of total available phase space

@ Changes with mirror voltage

@ Summing over proton energy yields contribution at particular
voltage
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Weak Dependence

@ Highest sensitivity ~ 25% @ 2.5% sensitive at best
@ a~0.1 @ > 10”ep events!
f; and f, vs. Voltage
% 4000 - P Ot
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g 3000 4 — 1 term .
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Preliminary Comparison to Data

@ Current data doesn’t Ratio vs. a
constrain a ) a0

@ Found runto run 3 100 E e
deviations g 2000 L2

@ Ratio method 2 2000 b 2
insensitive to £ 1000 =0tz
deviations O —

@ lllustrates low OO0 O e T
sensitivity

@ A consistency check @ More to come! )
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e Theoretical Review
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Radiative Decay Matrix Element

Tree-level Feynman Diagrams

v, v, v,

4 - -
Wy W Wy’ \e\ Wy’ \e&
n ¢ n ¢ n oy
L L L
(a) @ (b) t © t

@ (a), (b) QED calculable and (c) require HBxPT EFT

: - 2pPe -
Mo = 19 |o(pe) 2P LB, (1 < se)ui()

X Up(Pp)y* (1 — Ays)Un(pn)
— Ue(Pe)yu(1 —v5)va(py)

<Ty(p) PB4~ 5 ()
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@ Proton bremsstrahlung small ~ Use bl & s corea?

contribution. YES
- [Ekeiien O] @ What’s wrong with intuition?

proton O(q/mp) NOTHING
@ Electron term only, is it o What's the resolution?

correct? NO ' )

dr A(X) R(X) A(X)

—— = (1+3)2 [ + +

X ~ U [(oe 0 T (e p)po PY) T (BB

f

f(X) (X) f3(X)
é <(Pe py)2  (Pe-Py)(Pp - Py) * (Pp - pw)"‘)}

where X is all the kinematic variables
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Resolution

@ The gauge invariant trick

*
Z €ur — G

polarizations

can only with diagrams that are gauge invariant
Electron diagram alone is NOT gauge invariant

Electron diagram and proton diagram together are gauge
invariant = Trick works

To use only electron diagram = “brute force”
Input ¢, polarization explicitly

“Brute force” on electron diagrams
= gauge invariant trick on both diagrams (tree level)

O(1) proton contribution “illusory” — cancels
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Polarized Neutron Radiative Decay

@ Calculation for unpolarized neutron
@ Add polarization P by

1+
us(on) — TP )

@ Decay rate is

dr

sx = (1439 [01(X) +age(X)

+ P (Ags(X)pe + Bgs(X)p, + Ags(X)K)]

where a, A, B are familiar from non-radiative decay

@ Photon - neutron polarization coefficent is A, not unexpected,
electron bremsstrahlung and lowest order

Radiative 3-Decay



0 Radiative Corrections
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Neutron Decay Vertex

@ Neutron decay begins with g%, and g§ at tree level
@ Higher order loops correct g9 and g4

@ Infrared divergences

@ Bremsstrahlung diagrams needed

3-Body Final States
V N AN
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Bremsstrahlung

@ Radiative decay experiment is just this subset
@ With energy windows, hard / soft photon cutoff is explicit
@ Cutoff can vary by design

4-Body (Bremsstrahlung) Final States

R
BN S

+loops
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Generalization

@ Neutron decay is 3-body tree level diagram + loops with
bremsstrahlung diagrams (with their subsequent loops)
“‘incoherently" added to decay rate

@ Expect g% — gv

@ g, hard to calculate, measure A

@ Radiative decay just a subset though!

@ Why not g9 — g}, and measure )’ from only radiative decays?

@ Energy dependent radiative corrections established in 3H
(-decay
S. Gardner et al., Phys. Lett. B 598, 188 (2004)
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e Summary
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@ Upgrade to new detector is underway

@ Experiment is slightly sensitive to a, requires understanding
systematics very well

@ Provides more diagnostic checks
@ Calculation confusion cleared up
@ Calculation applied to polarized neutron system (iree level)

@ Seeing vertex bremsstrahlung and measuring radiative
corrections will likely require NLO calculations (HBxPT and
recoil order terms)
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