Next Generation Radiative Neutron Decay Experiment

R.L. Cooper ¹	T.E. Chupp ¹	M.S. Dewey ²	T.R. Gentile ²
H.P. Mumm ²	J.S. Nico ²	K.J. Coakley ³	B.M. Fisher ⁴
I. Kremsky ⁴	F.E. Wietfeldt ⁴	K.G. Kiriluk ⁵	E.J. Beise ⁵
	H. Breuer ⁵	J. Byrne ⁶	

¹University of Michigan ⁴Tulane University ²NIST, Gaithersburg, MD ⁵University of Maryland ³NIST, Boulder, CO ⁶University of Sussex

Outline

1 Experimental Developments

- 2 Correlation Coefficient a
- 3 Theoretical Review
- 4 Radiative Corrections
- 5 Summary

< 17 ▶

Goals for Run II

Goals

- 1% precision on branching ratio
- Measure energy spectrum

Obstacles

- Previous run systematics limited
- No response functions previously
- Inverse problem of extracting spectrum from convoluted data

Run I Spectrum

イロト イ理ト イヨト イヨト

Source of Uncertainty	Correction (%)	Uncertainty (%)
Photon detector gain drift		6.0
Analysis cut efficiencies		5.0
Monte Carlo statistics		4.0
Photon efficiency/resolution	+3.0	3.0
Beam divergence/profile		3.0
Electron bremsstrahlung	-3.0	3.0
B field registration		2.0
Mirror potential registration		1.0
Electron backscattering		0.5
Electronic artifacts		0.5
Total	-0.0	10.4

Э.

<ロ> <四> <ヨ> <ヨ>

- 12-Element γ Detector Higher statistics Different sensitivity to correlated backgrounds
- Improved beam optics "Active" area smaller than current beam
- Rigorous calibration routines
- Improved electronics New Gage Octopus card 8 channels / card Up to 125 MHz sampling 14-bit bipolar resolution
- Bare APD?

- 12-Element γ Detector Higher statistics Different sensitivity to correlated backgrounds
- Improved beam optics "Active" area smaller than current beam
- Rigorous calibration routines
- Improved electronics New Gage Octopus card 8 channels / card Up to 125 MHz sampling 14-bit bipolar resolution
- Bare APD?

- 12-Element γ Detector Higher statistics Different sensitivity to correlated backgrounds
- Improved beam optics "Active" area smaller than current beam
- Rigorous calibration routines
- Improved electronics New Gage Octopus card 8 channels / card Up to 125 MHz sampling 14-bit bipolar resolution
- Bare APD?

Improvements

- 12-Element γ Detector Higher statistics Different sensitivity to correlated backgrounds
- Improved beam optics "Active" area smaller than current beam
- Rigorous calibration routines
- Improved electronics New Gage Octopus card 8 channels / card Up to 125 MHz sampling 14-bit bipolar resolution
- Bare APD?

< ロ > < 同 > < 回 > < 回 >

- 12-Element γ Detector Higher statistics Different sensitivity to correlated backgrounds
- Improved beam optics "Active" area smaller than current beam
- Rigorous calibration routines
- Improved electronics New Gage Octopus card 8 channels / card Up to 125 MHz sampling 14-bit bipolar resolution
- Bare APD?

- 12-Element γ Detector Higher statistics Different sensitivity to correlated backgrounds
- Improved beam optics "Active" area smaller than current beam
- Rigorous calibration routines
- Improved electronics New Gage Octopus card 8 channels / card Up to 125 MHz sampling 14-bit bipolar resolution
- Bare APD?

12-Element Detector

Nearly complete!

- 12 BGO crystals coupled to 12 APDs
- Requires 12 independent HV sources to individually adjust gains
- Each APD varies slightly
- 12 Preamp signals coupled to Gage Octopus cards
- Currently doing dewar tests
 - Temperature stability
 - Gain
 - Compton
 - Crosstalk noise / pickup

12-Element Detector

Nearly complete!

- 12 BGO crystals coupled to 12 APDs
- Requires 12 independent HV sources to individually adjust gains
- Each APD varies slightly
- 12 Preamp signals coupled to Gage Octopus cards
- Currently doing dewar tests
 - Temperature stability
 - Gain
 - Compton
 - Crosstalk noise / pickup

Current Work

- Test data being collected
- Learning about electronics
- Building DAQ
- Benchmarking APDs

Naive Analysis

- Adjust baseline
- Find peak channel
- Some small ripple
- Histogram these peaks
- Operational

Stability Test

- Filled 5 hrs earlier
- Topped off 1 hr earlier
- Gaussian fit to histogram

• • • • • • • • • • • • •

Current Work

- Test data being collected
- Learning about electronics
- Building DAQ
- Benchmarking APDs

Naive Analysis

- Adjust baseline
- Find peak channel
- Some small ripple
- Histogram these peaks
- Operational

Stability Test

- Filled 5 hrs earlier
- Topped off 1 hr earlier
- Gaussian fit to histogram

< 🗇 🕨 < 🖃 🕨

Current Work

- Test data being collected
- Learning about electronics
- Building DAQ
- Benchmarking APDs

Naive Analysis

- Adjust baseline
- Find peak channel
- Some small ripple
- Histogram these peaks
- Operational

Stability Test

- Filled 5 hrs earlier
- Topped off 1 hr earlier
- Gaussian fit to histogram

< 47 ▶

- 3 >

Bare APD Photon Detector

- Detects lower energy (100 eV threshold)
- Higher rate. BR [0.10-10 keV] $\approx 6.4 \text{ x} 10^{-3}$ (theory)
- High *S*/*B* in runs
- Small surface area
- Faster response time

- 3 Theoretical Review
- 4 Radiative Corrections

5 Summary

< 47 ▶

- Photon philosophy Record first, ask questions later
- Many ep events collected with no energetic photon recorded
- Is there more information in our ep data?
- Over 10⁷ total *ep* events recorded

Unpolarized neutron decay rate (tree level)

$$rac{d\Gamma}{dE_e d\Omega_e d\Omega_
u} \propto p_e E_e (E_0 - E_e)^2 \left(1 + a rac{p_e \cos heta_{e
u}}{E_e}
ight)$$

Use Monte Carlo to integrate over all variables except E_p

$$\frac{d\Gamma}{dE_p} = f_1(E_p) + a \cdot f_a(E_p)$$

< 47 ▶

- f_a(E_p) term has strong proton energy dependence
- Experiment sensitive to proton energy can be made sensitive to a
- Electrostatic mirror does this in a very crude fashion

Phase Space Dependence

- Apparatus only sensitive to fraction of total available phase space
- Changes with mirror voltage
- Summing over proton energy yields contribution at particular voltage

A B > A B >

Phase Space Dependence

- Apparatus only sensitive to fraction of total available phase space
- Changes with mirror voltage
- Summing over proton energy yields contribution at particular voltage

A B > A B >

Phase Space Dependence

- Apparatus only sensitive to fraction of total available phase space
- Changes with mirror voltage
- Summing over proton energy yields contribution at particular voltage

- E - N

Weak Dependence

• Highest sensitivity pprox 25%

● *a* ≈ 0.1

- 2.5% sensitive at best
- > $10^7 ep$ events!

INT ()

Preliminary Comparison to Data

- Current data doesn't constrain a
- Found run to run deviations
- Ratio method insensitive to deviations
- Illustrates low sensitivity
- A consistency check

Ratio vs. a

- ∢ ∃ ▶

More to come!

- 3 Theoretical Review
- 4 Radiative Corrections

5 Summary

< 47 ▶

∃ >

Radiative Decay Matrix Element

• (a), (b) QED calculable and (c) require HB χ PT EFT

$$\mathcal{M}_{\text{QED}} = i \frac{eg_{V}}{\sqrt{2}} \left[\bar{u}_{e}(p_{e}) \frac{(2p_{e} \cdot \epsilon + \not e \not p_{\gamma})}{2p_{e} \cdot p_{\gamma}} \gamma_{\mu} (1 - \gamma_{5}) v_{\bar{\nu}}(p_{\nu}) \right. \\ \left. \times \bar{u}_{\rho}(p_{\rho}) \gamma^{\mu} (1 - \lambda \gamma_{5}) u_{n}(p_{n}) \right. \\ \left. - \left. \bar{u}_{e}(p_{e}) \gamma_{\mu} (1 - \gamma_{5}) v_{\bar{\nu}}(p_{\nu}) \right. \\ \left. \times \bar{u}_{\rho}(p_{\rho}) \frac{(2p_{\rho} \cdot \epsilon + \not e \not p_{\gamma})}{2p_{\rho} \cdot p_{\gamma}} \gamma^{\mu} (1 - \lambda \gamma_{5}) u_{n}(p_{n}) \right]$$

Intuition

- Proton bremsstrahlung small contribution.
- Electron $\mathcal{O}(1)$ proton $\mathcal{O}(q/m_p)$
- Electron term only, is it correct? NO

- Use both, is this correct? YES
- What's wrong with intuition? NOTHING

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• What's the resolution?

$$\begin{aligned} \frac{d\Gamma}{d^8X} &= (1+3\lambda^2) \left[\frac{f_1(X)}{(p_e \cdot p_\gamma)^2} + \frac{f_2(X)}{(p_e \cdot p_\gamma)(p_p \cdot p_\gamma)} + \frac{f_3(X)}{(p_p \cdot p_\gamma)^2} \right. \\ &\left. + a \left(\frac{f_1(X)}{(p_e \cdot p_\gamma)^2} + \frac{f_2(X)}{(p_e \cdot p_\gamma)(p_p \cdot p_\gamma)} + \frac{f_3(X)}{(p_p \cdot p_\gamma)^2} \right) \right] \end{aligned}$$

where X is all the kinematic variables

• The gauge invariant trick

$$\sum_{\mu
u} \epsilon^*_\mu \epsilon_
u
ightarrow - g_{\mu
u}$$

polarizations

can only with diagrams that are gauge invariant

- Electron diagram alone is NOT gauge invariant
- Electron diagram and proton diagram together are gauge invariant ⇒ Trick works
- To use only electron diagram ⇒ "brute force"
- Input ϵ_{μ} polarization explicitly
- "Brute force" on electron diagrams
 gauge invariant trick on both diagrams (tree level)
- $\mathcal{O}(1)$ proton contribution "illusory" \rightarrow cancels

Polarized Neutron Radiative Decay

- Calculation for unpolarized neutron
- Add polarization *P* by

$$u_n^{s}(p_n)
ightarrow rac{1+\gamma_5}{2} P u_n^{s}(p_n)$$

Decay rate is

$$\frac{d\Gamma}{d^8X} = (1+3\lambda^2) \left[g_1(X) + ag_2(X) + \mathbf{P} \cdot (Ag_3(X)\mathbf{p_e} + Bg_4(X)\mathbf{p}_\nu + Ag_5(X)\mathbf{k})\right]$$

where a, A, B are familiar from non-radiative decay

• Photon - neutron polarization coefficent is *A*, not unexpected, electron bremsstrahlung and lowest order

- Experimental Developments
- 2 Correlation Coefficient a
- 3 Theoretical Review
- 4 Radiative Corrections

5 Summary

< 47 ▶

Neutron Decay Vertex

- Neutron decay begins with g_V^0 and g_A^0 at tree level
- Higher order loops correct g_V^0 and g_A^0
- Infrared divergences
- Bremsstrahlung diagrams needed

< 口 > < 同

Bremsstrahlung

- Radiative decay experiment is just this subset
- With energy windows, hard / soft photon cutoff is explicit
- Cutoff can vary by design

- Neutron decay is 3-body tree level diagram + loops with bremsstrahlung diagrams (with their subsequent loops) "incoherently" added to decay rate
- Expect $g_V^0 \to g_V$
- g_A hard to calculate, measure λ
- Radiative decay just a subset though!
- Why not $g_V^0
 ightarrow g_V'$ and measure λ' from only radiative decays?
- Energy dependent radiative corrections established in ³H β-decay
 - S. Gardner et al., Phys. Lett. B 598, 188 (2004)

- Experimental Developments
- 2 Correlation Coefficient a
- 3 Theoretical Review
- 4 Radiative Corrections

< 47 ▶

- Upgrade to new detector is underway
- Experiment is slightly sensitive to *a*, requires understanding systematics very well
- Provides more diagnostic checks
- Calculation confusion cleared up
- Calculation applied to polarized neutron system (tree level)
- Seeing vertex bremsstrahlung and measuring radiative corrections will likely require NLO calculations (HBχPT and recoil order terms)