Radon-EDM Experiment

Eric Tardiff, Tim Chupp, Wolfgang Lorenzon (University of Michigan) John Behr, Matt Pearson, Gordon Ball, Greg Hackman, Martin Smith (TRIUMF) Carl Svensson, Andrew Phillips (Guelph) Mike Hayden (SFU) Norbert Pietralla, Georgi Rainovsk, Gene Sprouse (SUNY Stony Brook)

TRIUMF E929

Spokesmen: Timothy Chupp & Carl Svensson

Funding: NSF-Focus Center, DOE, NRC (TRIUMF), NSERC

What I did on my Summer Vacation

I went backward in time and discovered Parity Violation.

Atomic Electric Dipole Moment

Separation of Charge along **J**: <**d**>=g_d<**J**>

EDM Motivations Undiscovered

Study CP violation: mass scale Signal of NEW PHYSICS (beyond SM - CKM) Cosmological Baryon Asymmetry

Octupole Deformation-Parity Doublets (see Feynman vol 3.)

Nuclei with Octupole Deformation/Vibration

(Haxton & Henley; Auerbach, Flambaum, Spevak; Engel, Hayes & Friar, etc.)

	223 Rn	²²³ Ra	225 Ra	²²³ Fr	129 Xe	$^{199}\mathrm{Hg}$
$t_{1/2}$	23.2 m	$11.4 { m d}$	$14.9 \mathrm{~d}$	$22 \mathrm{m}$		
Ι	7/2	3/2	1/2	3/2	1/2	1/2
ΔE th (keV)	37^{*}	170	47	75		
$\Delta E \exp (\text{keV})$	-	50.2	55.2	160.5		
$10^{11}S$ (e-fm ³)	375	150	115	185	0.6	-0.75
$10^{28} d_A \ (e-cm)$	1250	1250	940	1050	0.3	2.1

Ref: Dzuba PRA66, 012111 (2002) - Uncertainties of 50%

*Based on Woods-Saxon Potential

† Nilsson Potential Prediction is 137 keV

NOTES: Ocutpole Enhancements Engel et al. agree with Flambaum et al. Even octupole vibrations enhance \mathbf{S} (Engel..., Flambaum& Zelevinsky)

Radon EDM Experiment 929 at TRUMF (Vancouver BC)

Sarah Nuss-Warren, Eric Tardiff, W. Lorenzon, TC - UM J Behr, M. Pearson, C. Svensson, A. Phillips, M. HaydenG. Hackman, G. Ball

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Atomic Electric Dipole Moment

1 JANUARY 2001

Atomic Electric Dipole Moment Measurement Using Spin Exchange Pumped Masers of ¹²⁹Xe and ³He

M. A. Rosenberry* and T. E. Chupp University of Michigan, Ann Arbor, Michigan 48109 (Received 1 August 2000)

We have measured the *T*-odd permanent electric dipole moment of ¹²⁹Xe with spin exchange pumped masers and a ³He comagnetometer. The comagnetometer provides a direct measure of several systematic effects that may limit electric dipole moment sensitivity, and we have directly measured the effects of changes in leakage current that result when the applied electric field is changed. Our result, $d(^{129}\text{Xe}) = 0.7 \pm 3.3(\text{stat}) \pm 0.1(\text{syst}) \times 10^{-27} e$ cm, is a fourfold improvement in sensitivity.

4th 3rd 2nd most sensitive EDM measurement.

Spin-Exchange Optical Pumping

- Optically pump the Rb with circularly polarized laser light.
- Spin-exchange collisions transfer the polarization to the radon nuclei.

van Der Waals

Molecule:

 τ is dependent on

 $3rd body (N_2)$ pressure.

.09Rr

Rb

Rb

Gamma Ray Anisotropies

The ²⁰⁹Rn Decay Scheme

²⁰⁹At

<u>γ-ray Energy</u>	Intensity	<u>δ (Mixing Ratio)</u>
337.45	14.5	∞
408.32	50.3	0
689.26	9.7	>3.57
745.78	22.8	>2.86 fro

from Table of Isotopes

Nuclear Orientation of Radon Isotopes by Spin-Exchange Optical Pumping

M. Kitano,^(a) F. P. Calaprice, M. L. Pitt, J. Clayhold, W. Happer, M. Kadar-Kallen, and M. Musolf Department of Physics, Princeton University, Princeton. New Jersey 08544

E_{γ} (keV)	Spin sequence	Anisotropy R	R = 1 (%)
337	$(\frac{1}{2}^{-}) - (\frac{5}{2}^{-})$	0.903(14)	-9.7 ± 1.4
408	$(\frac{5}{2}^{-}) = \frac{9}{2}^{-}$	1.009(7)	$+0.9 \pm 0.7$
689	$\frac{5}{2}$, $\frac{7}{2}$ - $\frac{5}{2}$ -	1.079(22)	$+7.9 \pm 2.2$
745	$(\frac{7}{2}^{-}) - \frac{9}{2}^{-}$	1.129(14)	$+12.9 \pm 1.4$

Spin Exchange Pumping

Modeling Polarization

- Can calculate the expected angular distribution of gamma rays as a function of spinexchange and relaxation rates.
- The spin-exchange rate γ_{SE} depends on the Rb density, which depends on cell temperature.
- The dipole and quadrupole relaxation rates, Γ_1 and Γ_2 , must be determined from data.

 $\Gamma_2(\mathbf{T}) = \Gamma_2^{\infty} e^{\Delta \mathbf{E}/k\mathbf{T}}$

Coherence in Freely Precessing ²¹Ne and a Test of Linearity of Quantum Mechanics

Shows T2~4.5 h, dominated by Quadrupole Interactions ($\Gamma_2 >> \Gamma_1$)

Modeling Polarization

- Quadrupole relaxation should be the dominant mechanism.
- As a first approximation, set $\Gamma_1=0$, calculate γ_{SE} for a given T, and calculate the expected anisotropies.

Polarization and relaxation of radon

E. R. Tardiff,¹ J. A. Behr,³ T. E. Chupp,¹ K. Gulyuz,⁴ R. S. Lefferts,⁴ W. Lorenzon,² S. R.

Nuss-Warren,¹ M. R. Pearson,³ N. Pietralla,⁴ G. Rainovski,⁴ J. F. Sell,⁴ and G. D. Sprouse⁴

¹FOCUS Center, University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA

²University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA

³TRIUMF, 4004 Westbrook Mall, Vancouver V6T 2A3, Canada

⁴SUNY Stony Brook Department of Physics and Astronomy, Stony Brook 11794-3800, USA

(Dated: December 6, 2006)

 $Backgrounds \\ \sigma_{\omega} = \frac{2}{T_{2}} \frac{1}{(S/N)} = \frac{2}{T_{2}} \frac{1}{\sqrt{A^{2}(1-B)^{2}N\gamma}}$

Build-up of decay products for γ-anistropy probe Change cells (weekly?) - good for systematics Scattered betas (beta asymmetry detection)

Systematics

Leakage currents -- must be minimized: **Multiple species** Electric quadrupole moment (gradients/walls) Change cells, cell shape/orientation: **Multiple species** Electric field effects on shields, electronics, etc. Check and measure with E=0 E² and |E| effects (Stark shifts) **Multiple Species**: J=1/2, 3/2, etc. Motional effects <vxE> (negligible in gas cells)

What's next?

We're done at Stony Brook

Cell characterization with natural xenon: - 27% ¹²⁹Xe (J=1/2); 21% ¹³¹Xe (J=3/2)

Cell development: coatings/electrodes/temperatures Laser studies (LDA light absorption by Rb)

TRIUMF

set up measurements with xenon isotopes

Measure Rn nuclear structure $(8-\pi)$

Build up to EDM measurements (~ 3 years)

Beta Asymmetry

 $R = R_0 \left(1 + \frac{p_e}{E_e} A_\beta \hat{J} \cdot \hat{r}\right)$

$$\xi A_{\beta} = \pm \kappa |g_A|^2 |<\sigma>|^2 - (g_V g_A^* + g_A g_V^*) < 1 > <\sigma>\sqrt{\frac{J_i}{1+J_1}}$$

J_i^{π}	J_f^{π}	A_{β}	note
7/2	9/2	+7/9	100% β^- decay; pure GT
	7/2	-2/9	not pure GT
	5/2	-1	pure GT

- No count rate limit (current detection mode)
- Discriminate species only by frequencies
- Scattered betas (lower effective A, Background)

Radon EDM Summary

Progresss - but a lot remains to be done.

²⁰⁹Rn work at Stony Brook Productive

Move to TRIUMF beginning summer 2007

²²³Rn EDM projections

Gamma Anisotropy (A=0.2 0.1) $T_2 = 30 \text{ s E}=5 \text{ kV/cm}$

	Gamma Anisotropy	beta asymmetry	
		ISAC	$ISAC \times 20$
Count Rate (s^{-1})	1.2×10^{5}	5×10^{6}	4×10^7
Α	0.2	0.2	0.2
Background	0.01	0.3	0.3
Total N (100 Days)	1×10^{12}	4×10^{13}	8×10^{14}
σ_{d_A} (e-cm)	1×10^{-26}	4×10^{-27}	5×10^{-28}