

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

Deepshikha Choudhury (Collaborators: D. Phillips, A. Nogga, R. Hildebrandt)

Supported by US-DOE

Focus

Neutron Spin Polarizabilities Neutron-particularly challenging Polarizabilities- EM properties-**Compton Scattering** Polarization observables in Compton Scattering on d and He-3 • Chiral Perturbation Theory (χ PT)pions and nucleons- $\omega \sim m_{\pi}$

Two Bunch Mode

•Circularly polarized photons

3/26/2007

Fundamental Neutron Physics, INT

Created by Brent Perdue, 2005

Thus, we study **Compton Scattering** on Light Nuclei (d & He-3) at Low Energies ($E \sim m_{\pi}$) using $HB\chi PT(upto O(Q^3))$

3/26/2007

The scattering amplitude

T_{γNN} has a chiral expansion.
 Naïve dimensional analysis Qⁿ for a vertex with n powers of p or m_π
 Q⁻² for pion propagator (1/(p²-m_π²))
 Q⁻¹ for nucleon propagator (1/(E-p²/2M))
 Q⁴ for loop (loop integral)
 Q³ for a two-body diagram (δ³(p₂'-p₂) absent)

The wavefunctions are derived from potential model or chiral potential.

How do the polarizabilites enter into the calculations?

• At $O(Q^3)$ the calculations are predictive.

$$T^{1B} = \sum_{i=1}^{6} A_{i}t_{i}$$

 $\gamma_{4p} = \gamma_{4n} = -1.1 \times 10^{-4} \, fm^4$

$$\begin{aligned} A_{1} &= -\frac{Z^{2}}{M} + (\alpha + \beta \cos \theta)\omega^{2} + (\Delta \alpha + \Delta \beta \cos \theta)\omega^{2} \\ A_{2} &= \frac{Z^{2}}{M}\omega + \beta\omega^{2} + \Delta \beta\omega^{2} \\ A_{3} &= \frac{\omega}{2M^{2}} [Z(Z + 2\kappa) - (Z + \kappa)\cos \theta] + A_{3}^{\pi^{0}} + \omega^{3}(\gamma_{1} - (\gamma_{2} + 2\gamma_{4})\cos \theta) \\ &+ \omega^{3}(\Delta \gamma_{1} - (\Delta \gamma_{2} + 2\Delta \gamma_{4})\cos \theta) \\ A_{4} &= -\frac{(Z + \kappa)^{2}\omega}{2M^{2}} + \omega^{3}\gamma_{2} + \omega^{3}\Delta \gamma_{2} \\ A_{5} &= \frac{(Z + \kappa)^{2}\omega}{2M^{2}} + A_{5}^{\pi^{0}} + \omega^{3}\gamma_{4} + \omega^{3}\Delta \gamma_{4} \\ A_{6} &= -\frac{Z(Z + \kappa)\omega}{2M^{2}} + A_{6}^{\pi^{0}} + \omega^{3}\gamma_{3} + \omega^{3}\Delta \gamma_{3} \end{aligned}$$

$$\begin{aligned} \alpha_{p} &= \alpha_{n} = 12.2 \times 10^{-4} fm^{3} \\ \beta_{p} &= \beta_{n} = 1.2 \times 10^{-4} fm^{3} \\ \gamma_{1p} &= \gamma_{1n} = 4.4 \times 10^{-4} fm^{4} \\ \gamma_{2p} &= \gamma_{2n} = 2.2 \times 10^{-4} fm^{4} \end{aligned}$$

BKM, PRL 67 1515

3/26/2007

Observable (Double Polarization Asymmetries, $\Delta_z & \Delta_x$)

Effect of varying γ 's on Δ_z at 135 MeV (lab)

3/26/2007

Effect of varying γ 's on Δ_x at 135 MeV (lab)

3/26/2007

$$\begin{array}{c}
 & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Anatomy of the Calculation

 $\gamma^{3}He \rightarrow \gamma^{3}He$

DC, D. Phillips, A. Nogga (in preparation)

 $T = T^{1B} + T^{2B}$

Polarized He-3 is interesting!

$$T_{\gamma^{3}He} = \sum_{i=1}^{6} A_{i}t_{i},$$
$$A_{i} \equiv A_{i}^{1B} + A_{i}^{2B}$$

*To the extent that polarized He-3 behaves as an "effective" neutron, contributions from $A_i^{2B}(i=3..6)$ are negligible * $A_i^{1B} \sim A_i^{1B} (O(Q^3)) + \Delta A_i^{1B}$ * $\Delta A_i^{1B} \sim \Delta A_i^{1B}(n)$

Comparison of dcs at different orders

DCS vs cm angle at 120MeV (Effect of α_n and β_n)

Not so Simple!

Proton Spin polarizabilities not well known Experiment scheduled at HIYS (R. Miskimen) Measure double polarization observables for Compton scattering on proton. Neutron electric and magnetic polarizabilities not accurately known Unpolarized Compton scattering experiment on d at MAXLab (Lund).

Theoretical Ambiguities

Boost corrections (really small) Included in d calculations. Effect studied for He-3 calculations. Recoil corrections Included in d calculations. Effect studied for He-3. Wavefunction dependence Studied for both d and He-3. Effect of the Delta Collaborated with R. Hildebrandt for polarized γd • Needs to be done for γ He-3

Wavefunction Dependence

For polarized γd calculation

Wavefunction Dependence (yHe-3)

Effect of the Delta (R. Hildebrandt)

Additional diagrams at O(ε³)
ε~(p, m_π, Δ₀)

DC, R. Hildebrandt (in preparation)

Effect of varying γ 's on Δ_x at 135 MeV (lab): γ d

3/26/2007

Effect of varying γ 's on Δ_z at 135 MeV (lab): γ d

3/26/2007

Summary

- Elastic scattering "promising" avenue to extract polarizabilities.
- We have taken the first step with γHe-3 and polarized γd calculations.

 $\gamma d \rightarrow \gamma d$

Double pol. Observables are sensitive to combination of neutron spin polarizabilities.

 $\gamma^{3}He \rightarrow \gamma^{3}He$

- Double pol. Observables are quite sensitive to combinations of neutron spin polarizabilities.
- dcs is sensitive to α_n and β_n and can be used to extract them if needed.

Outlook

More needs to be done both in theory and experiment.

- Proton spin polarizabilities should be measured first (HIγS - scheduled).
- α_n & β_n should be pinned down (Lund unpolarized γd experiments).
- Neutron spin polarizabilities through polarized γd and $\gamma He-3$ (HI γS scheduled).
- Theory: Delta-ful, O(Q⁴) calculations
- Effort required to reduce theoretical uncertainties.

Thank You!

γ_{E1E1}	=	$-\gamma_1-\gamma_3,$
γ_{M1M1}	=	$\gamma_4,$
γ_{M1E2}	=	$\gamma_2 + \gamma_4,$
γ_{E1M2}	=	$\gamma_3.$

