Pairing Gaps and Polarization in Cold Fermions

Upper and Lower "Bounds" for Pairing Gap at Unitarity

Sanjay Reddy & J. Carlson (LANL) Lattice Methods: K. Schmidt (ASU) & Shiwei Zhang (W&M) Original work w/ K. Schmidt (ASU), V. Pandharipande, S.Y. Chang (Ill)

Image from Randy Hulet

Simple (Universal) Interaction Highly Tunable Fundamental Studies of strongly-paired systems (nuclei and QCD)

C old Fermi Atoms Neutrons scattering length tunable -18.5 fm effective range 0 2.7 fm `Benchmark' for Strongly-Coupled Fermions $\mathcal{H} = \sum$ *A k*=1 $\sqrt{\frac{\hbar^2}{2m}}$ 2*mk* $(\nabla_k^2) + \sum$ *i<j v*(*rij*) t unable **Variational wavefunction** ^Ψ*^V* (**R**) ⁼ " *i,j*!

Neutron Matter

Neutron-Neutron interaction - dominantly s-wave (spin 0) at low energy Large scattering length \sim -18 fm Modest effective range \sim 2.7 fm

Zero Temperature Equation of State Difficult to get wrong --- at low density

Even if no new phases, parameters including Superfluid gap Δ are important

Superfluid gap for low-density neutron matter affects cooling

Benchmark for pairing in the strong-coupling QCD

QCD at high densities

Method I: Diffusion (Green's function) Monte Carlo H_{H} - H_{H} and H_{H} and H_{H} are functions of H_{H}

Fixed Node - Variational Upper Bound **Hamiltonian**

Vary parameters in nodal surfaces [∼] different 'phases' (superfluid or
normal) normal)

Transient Estimation 19.5fm, *routing ion*, *resultant i a* = 2*.*7*fm*, *r*_n $\frac{1}{2}$, *r*_n $\frac{1}{2}$,

Comparisons to Lattice Methods at Equal Populations **Green's Function Monte Carlo**

$$
\Psi(\tau \to \infty) = \lim_{\tau \to \infty} e^{-(\mathcal{H} - E_{\tau})\tau} \Psi_V
$$

Variational wavefunction

$$
\Psi_V(\mathbf{R}) = \prod_{i,j'} f(r_{ij'}) \Phi_{BCS}(\mathbf{R})
$$

Lattice Methods

Auxiliary Field QMC - evolve single particle orbitals (Hirsch, Scalapino, Koonin, ...)

Continuum Limit $=$ Limit of large $#$ particles and dilute system

Fixed Particle number BCS-like trial state used for importance sampling

Largest system: 38 particles on a 20x20x20 lattice : 0.25% filling

Exact (no sign problem) for zero polarization

Measurements and EOS at $a =$ infinity

0.51 (4) Kinast, et al., Science (2005)
0.32 (+.13,-.1) Bartenstein, et al., PRL (2004) Bartenstein, et al., PRL (2004) 0.36(15) Bourdel, et al., PRL (2004) 0.46(5) Partridge, et al., PRL (2004) 0.45(5) Stewart, et al., PRL (2006) 0.41(15) Tarruell, et al., cond-mat/0701181

Large Polarization $E_{N+1}(k) - (3/5) k_f^2/(2m) = \eta(k/k_f) k_f^2/(2m)$

 $η(0) = -0.60(03)$ QMC calculation

1 down spin in a sea of up spins

At $T = 0$, assume 1st order phase transition at a local polarization of ~45%

Calculated gap \approx 0.5 (.05) Ef

If experiments say there is no polarization in the superfluid at T=0 :

Equilibrium (chemical potentials, pressure) implies gap > 0.40(.02) Ef

Very close to Sarma phase at unitarity and T=0

FIG. 3: Fit to the Rice Expt. [1]

Conclusions / Future Directions After a few years, we know the pairing gap at Unitarity much better than we know the neutron superfluid gap Delta / $EF = 0.5$ (0.1)

Fully Polarized state cannot exist in the bulk at finite polarization

Even small temperatures will polarize the superfluid state near the transition, but not in the trap center

Experiment:

Experiments which measure both n, $n \uparrow$ - $n \downarrow$ vs. r for different Geometries, Polarizations and Temperatures

Theory

 Calculations in different geometries More accurate calculations of Gap and dispersion Calculations of different possible phases