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Dimensionless fundamental constant

Characterizes the strength of all electromagnetic 
interactions

FineFine--Structure Constant Structure Constant αα
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Energy of atomic levels ∝ mec2·α2 ·(1+kα2+…)

G. Gabrielse et al, Phys. Rev. Lett. 97, 030802 (2006) 
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Are the constants of Nature constant?
(A fundamental question)
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The constants: Dimensionless 
combinations do not 

depend on units :

Conventional Wisdom:

a,β,g-constant; δ~t-1,ε~t-1

Dirac’s Large Number Hypothesis and variations :

Ruled out as predict variations ~ 
10-10-10-12/y



Dirac’s Large Number Hypothesis:
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Large variations are out…

… but BIG QUESTIONS are in:
Are there small changes of  “constants” over the 
past 13 Gy or so ?

May the “constants” be changing as we speak ?

Laboratory ?

Observations



Astrophysical searches for α-variation

or QSO



Astrophysical evidence for smaller α in the past:

J. K. Webb, et al. , Phys. Rev. Lett. 87, 091301 (2001)



α/α (× 10-16 /yr)

J. K. Webb, et al. , Phys. Rev. Lett. 87, 091301 (2001)7.2 ± 1.82001

2003

1999

M. T. Murphy, et al. , Mon. Not. R. Astron. Soc. 345, 609 
(2003)6.4 ± 1.4

J. K. Webb, et al. , Phys. Rev. Lett. 82, 884 (1999)14 ± 5

Astrophysical evidence for a smaller α in the past:

Victor V. Flambaum



However, other groups see no variation:
(using a different telescope and higher quality but smaller data set)

α/α (× 10-16 /yr)

R. Srianand, et al. , Phys. Rev. Lett.  92, 121302 (2004)0.6 ± 0.62004

2004 R. Quast, et al. , Astron. Astrophysics. 415, L7 (2004)0.5 ± 4



More Controversy: claim for variation of   /p em mμ =

These measurements are based on the different dependences 
of molecular energies on μ:

• Electronic
• Vibrational 
• Rotational
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More Controversy: limit on variation of   /p em mμ =

arXiv.org > astro-ph > arXiv:0704.2301



Laboratory Searches

Looking for present-day variation [e.g.,                ]
Level of present interest: 1/105 per 10 Gy
Which is 1/1015 per year (assuming linear variation) 
This is about where best atomic clocksbest atomic clocks are today
Clock laboratories search for variation of constants
(We do not rely on fancy clock, but still would like to have one )

( )t nowα =



Laboratory limits (1σ):

Jason E. Stalnaker

Rapid progress with trapped 
single ions and femtosecond 

frequency combs !









αα--Variation in Atomic DysprosiumVariation in Atomic Dysprosium

Two nearly degenerate states in dysprosium (Dy, Z=66) 
are highly sensitive to α-variation:
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For α/α ~ 10-15 /yr

⇒ dΔ/dt ~ 2 Hz/yr !!

A
B

Δ

Δ ~ (3-1000) MHz

dΔ/dt ~ 2×1015 Hz α/α

Dzuba, Flambaum, Kozlov, et al



Opposite parity

ΔE ~ 3-1000 MHz

⇒ E1 transition connecting the states can be driven 
with rf electric field

⇒ small enough to allow accurate direct counting of 
transition frequency

⇒ relaxed requirements on reference clock (∆υ/ υ)

A and B StatesA and B States



Statistical SensitivityStatistical Sensitivity

Transition linewidth ~ 20 kHz

Counting rate ~ 109 s-1

T1/2
⇒ Sensitivity:  δν ~  0.6   Hz s1/2

After an hour of data taking, δν ~ 10 mHz which allows 

for a sensitivity of

|α/α| ~ 5 x 10-18 /yr !!



833 nm

669 nm

1397 nm 
(b.r. ~ 30%)
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PopulationPopulation

•Three-step scheme:

3rd - spontaneous 
emission

1st & 2nd - cw laser 
excitation



564 nm

E V E N O D D
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rf Transition and Detectionrf Transition and Detection

• rf E-field excites atoms 
to state A

• State A decays and   
564-nm light is detected

rf E-Field



The experiment evolved from a 
parity nonconservation parity nonconservation search in Dy



ApparatusApparatus

669-nm light

833 nm light

light pipe

interference filter

OVEN

PMT

mirror

Interaction Region



Interaction RegionInteraction Region



Experimental SetupExperimental Setup
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Amplifier
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10 kHz Modulation
Frequency

to E-Field 
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-6(~10   Torr)
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First DataFirst Data

Amplitude Modulation:

ν0 = 3 073 937(52) Hz



rf Frequency Modulationrf Frequency Modulation
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Fixed Frequency TechniqueFixed Frequency Technique

1st Harmonic 2nd Harmonic

Measure the normalized by the

Ratio (1st/2nd) = const.(ν - ν0)



A.- T. Nguyen et al. PRA Phys. Rev. A 69, 022105 
(2004)

Systematic Effects

• However, it is not the size but the stability of these effects that is important

⇒ preliminary analysis shows that systematic effects can be controlled to 

a level corresponding to |α/α| ~ 5 x 10-18 /yr.



Since Dy has many isotopes (some with hfs), more than 
one rf transition frequency can be measured

ω1

ω2

For example, two transition frequencies can be simultaneously measured:

Powerful Check for SystematicsPowerful Check for Systematics

ω1 + ω2 ⇒ insensitive to α variation

ω1 - ω2 ⇒ α variation is twice as large



Collisions with residual background atoms perturbs a 
radiating (absorbing) Dy atom

⇒ lineshape broadening and shift

Collisional effects in high-vacuum (10-6 Torr) have 
rarely been measured

Simple estimate:

σ ~ 10-14 cm2

n > 3x1010 molecules/cm3 at 1μTorr

v > 4x104 cm/s

⇒ δν ~ (2π)-1 n σ v = 2 Hz

Collisional EffectsCollisional Effects



Collisional DataCollisional Data

Collisional Shifts due to N2
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Collisional ShiftsCollisional Shifts

235-MHz3.1-MHz
Gas

+2.75 (10)
+2.78 (9)
+2.14 (11)

< 5
+1.72 (7)
-0.02 (6)
-1.27 (6)
-0.09 (8)

-2.21 (7)Ar

-0.02 (4)H2

-2.74 (7)Xe
-2.78 (7)Kr

-1.97 (30)O2

-1.71 (5)N2

-0.01 (3)Ne
+1.25 (3)He

Shift Coefficients (Hz/μTorr)

Conclusion:
⇒ collisional effects are consistent with those found 

in 1-Torr measurements



Laser Detuning EffectLaser Detuning Effect

Laser Detuning Effect for 235-MHz Transition
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Laser Detuning Effect for 754-MHz Transition
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Results

(-0.3 ± 3.6) x 10-15 yr-1 (-5.0 ± 3.7) x 10-15 yr-1

-0.6 ± 6.5 Hz/yr 9.0 ± 6.7 Hz/yr

α/α =
.



α/α = (-2.9 ± 2.6mostly syst) x 10-15 yr-1
. Independent of other 

fundamental constants

Result: Phys. Rev. Lett. 98, 040801 (2007) 



The Future




