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map AdS5 X S5 to conformal N=4 SUSY
• QCD is not conformal;  however, it has some 

manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• IR fixed point?

• “Semi-classical” approximation to QCD

• Use mapping of conformal group SO(4,2) to AdS5

3

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:

AdS/CFT: Anti de Sitter Space/Conformal Field Theory
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• Polchinski & Strassler: AdS/CFT  builds in conformal symmetry at 
short distances; counting rules for form factors and hard exclusive 
processes; non-perturbative derivation

• Goal: Use AdS/CFT to provide an approximate model of hadron 
structure with confinement at large distances, conformal behavior 
at short distances

• de Teramond, sjb:  AdS/QCD Holographic Model: Initial “semi-
classical” approximation to QCD.  Predict light-quark hadron 
spectroscopy,  form factors.

• Karch, Katz, Son, Stephanov: Linear Confinement

• Mapping of AdS amplitudes to 3+ 1 Light-Front equations, 
wavefunctions

• Use AdS/CFT wavefunctions as expansion basis for diagonalizing 
HLFQCD ; variational methods
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.
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FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U) + m0
|χp,β〉

〉
.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM−1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Lattice simulation 
(MILC)

Schwinger-Dyson

Infrared-Finite QCD Coupling?

Furui, Nakajima

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.

5

Shirkov
Gribov

Dokshitser
Siminov
Maxwell
Cornwall
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IR Fixed Point for QCD?

• Dyson-Schwinger Analysis:    QCD coupling  (mom 
scheme) has IR Fixed point!                                      
Alkofer, Fischer, von Smekal et al.

• Evidence from Lattice Gauge Theory  Furui, Nakajima

• Define coupling from observable: indications of IR fixed 
point for QCD effective charges

• Confined gluons and quarks: Decoupling of QCD vacuum 
polarization at small Q2 

• Justifies application of AdS/CFT in strong-coupling 
conformal window

6
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t u

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Gell Mann-Low Effective Charge for QED
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α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

QED One-Loop Vacuum Polarizationα(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2
Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Serber-Uehling

Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β = dα
d logQ2 = 1

3n$.

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β =
d( α

4π)
d logQ2 = 4

3(
α
4π)2n$ > 0

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

(t spacelike)

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

xF

A2/3 component

A1 component

vanishes at small momentum transfer
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Effective gluon mass:  vacuum polarization vanishes at small 
momentum transfer

β = 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

9

Oberwölz

Π(Q2) ∼ α
5π

Q2

m2
e

Q2 << m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << m2
g

Oberwölz

Π(Q2) ∼ α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Oberwölz

Π(Q2) ∼ α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Analog of Serber-Uehling vacuum polarization in QED:

Oberwölz

Q4F1(Q2)→ constant

Π(Q2) = α
15π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

αs(Q2) ! const

at Q2 < 4M2
g

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Decoupling of long wavelength gluonic interactions

Cornwall
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Conformal symmetry: Template for QCD

• Take conformal symmetry as initial approximation; 
then correct for non-zero beta function and quark 
masses

• Eigensolutions of ERBL evolution equation for 
distribution amplitudes

• Commensurate scale relations: relate observables at 
corresponding scales: Generalized Crewther Relation

• Fix Renormalization Scale (BLM)

• Use  AdS/CFT

10

V. Braun et al; 
 Frishman, Lepage, Sachrajda, sjb
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FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Constituent Counting Rules

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

11

Conformal symmetry and PQCD predicts 
leading-twist power behavior

Characteristic scale of QCD: 300 MeV

New  J-PARC, GSI, J-Lab, Belle, Babar tests

Farrar & sjb; Matveev et al
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Scaling  Laws from PQCD or AdS/CFTQCD  Factorization 

Lepage, Sjb
Efremov 

Radyushkin
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Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

 Leading-Twist  PQCD Factorization

13

(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

!(ep→ eX) " #
q

e2q Inclusive, DIS

(13)

!(ep→ ep) " (#
q

eq)
2 Exclusive, form factor

! !

"

!#$

!"#$%&'()

% *+,-.

&

/0#$%&'()

! !

" "

#$ !

% *+12

FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable $ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.

M =
∫ ∏

dxidyiφF (x, Q̃)×TH(xi, yi, Q̃)φI(yi, Q)

Lepage, sjb

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

High Q2 from short distances

Fπ(Q2)

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

If αs(Q̃2) " constant

High Q2 from short distances
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Features of  Hard Exclusive 
Processes in PQCD 

• Factorization of  perturbative hard scattering subprocess 
amplitude and nonperturbative distribution amplitudes

• Dimensional counting rules: short-distance dominance

• Hadron helicity conservation

• Color transparency

• Hidden color

• Evolution Equations

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

Lepage, sjb; Efremov, Radyushkin
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FIG. 3: Pion form factor as extracted in this work. Also
shown are e−π elastic data from CERN, and earlier pion elec-
troproduction data from DESY and Jefferson Lab. The ear-
lier Jefferson Lab data are taken from reference [9]. The data
point at Q2 = 1.60 GeV2 from [9] has been shifted from its
central value for visual representation. The curves are from a
Dyson-Schwinger equation (solid, [17]), QCD sum rules (dot-
ted, [14]), dispersion relations with QCD constraint (dashed,
[15]), and from a pQCD calculation (dashed-dotted, [18]).

inance the longitudinal π−/π+ ratios in 2H were exam-
ined. Since the pole term is purely isovector this ratio is
expected to be close to unity and a significant deviation
from unity would indicate the presence of an isoscalar
background. The preliminary analysis of the longitudi-
nal π−/π+ ratios is consistent with unity.

In Figure 3, our results are shown along with re-
sults from CERN, DESY, earlier Jefferson Lab data, and
some representative calculations. Comparing the result
at Q2 = 1.60 GeV2 to the earlier Jefferson Lab data
point at a lower value of W allows for a direct test of the
theoretical model dependence. A higher value of W al-
lows for a measurement at smaller values of −t, at closer
proximity to the pion pole. The data are consistent with
the previous Jefferson Lab Fπ measurement at a value of
Q2 = 1.60 GeV2 and suggest a small model uncertainty
due to fitting the VGL model to the data. The data in-
dicate a one sigma deviation from a monopole form fac-
tor that yields the measured charge radius. That form
factor is up to Q2=2.5 GeV2 indistinguishable from the
solid curve in Figure 3. Various models provide a good
description of the measured values for Fπ up to Q2=1.60
GeV2. The data are well described by the calculation of
Nesterenko and Radyushkin [14], in which a QCD sum
rule framework for the soft contribution to Fπ as well as
an asymptotically dominant hard gluon exchange term
is used. The dispersion relation calculation by Geshken-

bein [15] also agrees well with the data. The data are
also reasonably well described by the Dyson-Schwinger
calculation by Maris and Tandy, which is based on the
Bethe-Salpeter equation with dressed quark and gluon
propagators. All parameters in the latter calculation are
determined without the use of Fπ data [16, 17]. Perturba-
tive QCD calculations of which one is shown in Figure 3
give values of Q2Fπ around 0.10 GeV2 in the region of
our measurements.

In summary, we have measured separated 1H(e,e′π+)n
cross sections at values of Q2=1.60 and 2.45 GeV2 at
W=2.22 GeV. The charged pion form factor was ex-
tracted from the separated longitudinal cross section us-
ing a Regge model. The data are consistent with the
previous Jefferson Lab result at Q2 = 1.60 GeV2. The
data deviate by one sigma from a monopole form factor
obeying the measured charge radius, but are still far from
the values expected from pQCD calculations.
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G. Huber

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L
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FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance at high  momentum transfer!

Constituent counting rules
Farrar, sjb; Muradyan, Matveev, Taveklidze

No sign of running coupling

16
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Conformal Invariance:
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Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

powern = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

Best Fit  

cm2

GeV2

Reflects
underlying 
conformal 
scale-free 

interactions
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Deuteron Photodisintegratio! 

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s11dσdt (γd→ np) = F(θCM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Conformal invariance 
at high  momentum transfers!

J-Lab

19
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2Elastic electron-deuteron scattering

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) " Fπ(Q2)

e e′

γ∗

q

d

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

d′

e e′

γ∗

q

Define “Reduced” Form Factor

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fn(

Q2
4 )
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Deuteron Reduced Form Factor
! Pion Form Factor×15%

• Evidence for Hidden Color in the Deuteron
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dσ
dt (γd→ Δ++Δ−)# dσ

dt (γd→ pn) at high Q2

dσ
dt (γd→ Δ++Δ−)# dσ

dt (γd→ pn) at high Q2

Lepage, Ji, sjb

• Deuteron six-quark wavefunction

•  5 color-singlet combinations of 6 color-triplets --      
only one state  is | n  p

• Components evolve towards equality at short distances

• Hidden color states dominate deuteron form factor and 
photodisintegration at high momentum transfer

• Predict 

    Hidden Color in QCD
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Why do dimensional counting 
rules work so well?

• PQCD predicts log corrections from powers of αs, logs, pinch 
contributions  Lepage, sjb; Efremov, Radyushkin

• DSE: QCD coupling  (mom scheme) has IR Fixed point!       
Alkofer, Fischer, von Smekal et al.

• Lattice  results show similar flat behavior

• PQCD exclusive amplitudes dominated by integration regime 
where αs   is large and flat

Furui, Nakajima

23
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AdS/QCD G. F. de Téramond

Strongly Coupled Conformal QCD and Holography

• Conformal Theories are invariant under the Poincaré and conformal transformations with

Mµν , P µ,D,Kµ, the generators of SO(4, 2).

• QCD appears as a nearly-conformal theory in the energy regimes accessible to experiment.

Invariance of conformal QCD is broken by quark masses and quantum loops. For β =
dαs(Q2)/dQ2, QCD is a conformal theory: Parisi, Phys. Lett. B 39, 643 (1972).

• Growing theoretical and empirical evidence that αs(Q2) has an IR fixed point:
von Smekal, Alkofer and Hauck, arXiv:hep-ph/9705242; Alkofer, Fischer and Llanes-Estrada, hep-

th/0412330; Deur, Burkert, Chen and Korsch, hep-ph/0509113 . . .

• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Brodsky and Farrar, Phys. Rev. Lett. 31, 1153 (1973); Matveev et al., Lett. Nuovo Cim. 7, 719 (1973).

Caltech High Energy Seminar, Feb 6, 2006 Page 824
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AdS/QCD G. F. de Téramond

5-Dimensional
Anti-de Sitter

Spacetime

4-Dimensional
Flat Spacetime

(hologram)

Black Hole

1-2006
8685A7

z0 = 1/ΛQCD

z

Caltech High Energy Seminar, Feb 6, 2006 Page 3
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Truncated AdS Space
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ηµνdxµdxν − dz2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11
26

invariant measure
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• Use mapping of conformal group SO(4,2) to AdS5

• Scale Transformations represented by wavefunction  
in 5th dimension

• Holographic model: Confinement at large distances 
and conformal symmetry in interior

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Truncated space simulates “bag” boundary conditions

Guy de Teramond
SJB 

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

ψ(z0) = 0

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

AdS/CFT
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD.

• Normalizable AdS modes Φ(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

0

2

4

z

Φ(z)

3-2006
8721A13

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

Confinement 
in the 5th 

dimension
z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

Twist dimension 
of baryon

z0 = 1
ΛQCD

z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

de Teramond, sjb

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

Identify hadron by its interpolating operator at z  -- > 0

28
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Guy de Teramond
SJB 

Only one 
parameter! 

Entire light 
quark baryon 

spectrum

Prediction from  
AdS/QCDAdS/QCD G. F. de Téramond
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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• SU(6) multiplet structure for N and ∆ orbital states, including internal spin S and L.

SU(6) S L Baryon State

56 1
2 0 N 1

2
+(939)

3
2 0 ∆ 3

2
+(1232)

70 1
2 1 N 1

2
−(1535) N 3

2
−(1520)

3
2 1 N 1

2
−(1650) N 3

2
−(1700) N 5

2
−(1675)

1
2 1 ∆ 1

2
−(1620) ∆ 3

2
−(1700)

56 1
2 2 N 3

2
+(1720) N 5

2
+(1680)

3
2 2 ∆ 1

2
+(1910) ∆ 3

2
+(1920) ∆ 5

2
+(1905) ∆ 7

2
+(1950)

70 1
2 3 N 5

2
− N 7

2
−

3
2 3 N 3

2
− N 5

2
− N 7

2
−(2190) N 9

2
−(2250)

1
2 3 ∆ 5

2
−(1930) ∆ 7

2
−

56 1
2 4 N 7

2
+ N 9

2
+(2220)

3
2 4 ∆ 5

2
+ ∆ 7

2
+ ∆ 9

2
+ ∆ 11

2
+(2420)

70 1
2 5 N 9

2
− N 11

2
−

3
2 5 N 7

2
− N 9

2
− N 11

2
−(2600) N 13

2
−

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 1930



 
 Stan Brodsky,  SLAC

AdS/QCDInstitute for Nuclear Theory
April 11, 2007

String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

31



 
 Stan Brodsky,  SLAC

AdS/QCDInstitute for Nuclear Theory
April 11, 2007

AdS/CFT as a Semi-Classical Approximant to QCD
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I. INTRODUCTION

The application of the AdS/CFT correspondence to
QCD phenomenology has had a number of remarkable
successes, despite the fact that QCD is not a conformal
theory. For example, the predicted masses of three-quark
states gives an excellent representation of the observed
spectrum of spin-1/2 and spin-3/2 baryons and their or-
bital angular excitations for isospin I = 1/2 and I = 3/2.
There is only one parameter – the overall mass scale. The
form factors of the nucleons and pion also agree well with
experiment. The AdS/CFT wavefunctions of the hadrons
satisfy conformal symmetry at short distances and con-
finement at long distance, thus allowing one to derive the
quark counting rules for hard exclusive processes without
using perturbation theory.

The essential step in identifying specific hadronic
states in AdS/CFT is the requirement that the wave-
function in the Anti-deSitter space has the correct be-
havior at short distances φH(z) ∼ z∆

H , where ∆H is the
twist dimension of the local interpolating operator with
the quantum number of the state ∆H = nH + L. Here
nH is the number of minimum number of constituents
of the hadron and L is the integral total internal orbital
angular momentum. However, In order for this short-
dtstance behavior to be consistently derived from the
equation of motion in the AdS space, the mass µ govern-
ing the string dynamics has to be quantized and match
the conformal dimensions; For example, for mesons we
shall show (µR)2 = −4 + L2 using semiclassical quanti-
zation where R is the characteristic radius of AdS space.
Furthermore, since L2 ≥ 0 this quantization condition
also satisfies the Breitenlohner-Freedman condition for
stable eigensolutions of the string theory. Given this
quantization, (µR)2 becomes a Casimir operator in the
AdS equation of motion, similar to the L(L + 1) Casimir
in nonrelativistic Schrodinger theory.

In this paper we shall show that the quantization con-
dition for µR can be derived from the semi-classical quan-
tization of the string action in AdS space.

Our analysis shows why Anti-de Sitter space holo-
graphic methods can be used to obtain a first approx-
imant to quantum chromodynamics.

The coupling must be constant in this approximation
since there are no vacuum polarization graphs. Its deriva-
tive is zero. The interaction is scale invariant. It is consis-
tent with the idea that the quantum corrections decouple

at large distances. In fact, since the gluons are confined
in the truncated space, they have an effective mass, so it
is reasonable that they decouple from the β function at
small q2.

The essential principle underlying the AdS/CFT ap-
proach to conformal gauge theories is the isomorphism
of the group of Poincare and conformal transformations
SO(4, 2) to the group of isometries of Anti-deSitter space
SO(1, 5). The AdS metric is ds2 = R2

z2 (ηµνdxµdxµ−dz2)
which is invariant under scale changes of the coordinate
in the fifth dimension z → λz and dxµ → λdxµ. Thus
one can match scale transformations in 3 + 1 physical
space time to scale transformations in the fifth dimen-
sion z. Different values of z correspond to different scales
in which the hadron is examined. The amplitude φ(z)
represents the extension of the hadron into the fifth di-
mension. The behavior of φ(z) → z∆ at z → 0 must
match the twist dimension of the hadron at short dis-
tances x2 → 0. As shown by Polchinski and Strassler,
one can simulate confinement by imposing the condition
φ(z = z0 = 1

ΛQCD
). The corresponding action for string

amplitudes in this AdS space is

S[Φ] = κ′
∫

d4xdz
√

g
[
g"m∂"Φ∗∂mΦ− µ2Φ∗Φ

]
(1)

where [κ′] = L−2.
We can verify the invariance of the full action (1) for

a scalar field Φ with respect to scale transformations

xµ → λxµ, z → λz. (2)

Since √g = R5/z5 and

g"m =
z2

R2
η"m, (3)

it follows that full space action (1) is invariant under the
full space scale transformations (2), since Φ is a scalar
field

Φ(x") = Φ(λx"). (4)

One can obtain expectation values for QCD observ-
ables by constructing the generating functional

L→ L+
∑

I

JI(x)OI(x), (5)

Action for scalar field in AdS5
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tization of the string action in AdS space.

Our analysis shows why Anti-de Sitter space holo-
graphic methods can be used to obtain a first approx-
imant to quantum chromodynamics.

The coupling must be constant in this approximation
since there are no vacuum polarization graphs. Its deriva-
tive is zero. The interaction is scale invariant. It is consis-
tent with the idea that the quantum corrections decouple

at large distances. In fact, since the gluons are confined
in the truncated space, they have an effective mass, so it
is reasonable that they decouple from the β function at
small q2.

The essential principle underlying the AdS/CFT ap-
proach to conformal gauge theories is the isomorphism
of the group of Poincare and conformal transformations
SO(4, 2) to the group of isometries of Anti-deSitter space
SO(1, 5). The AdS metric is ds2 = R2

z2 (ηµνdxµdxµ−dz2)
which is invariant under scale changes of the coordinate
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space time to scale transformations in the fifth dimen-
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represents the extension of the hadron into the fifth di-
mension. The behavior of φ(z) → z∆ at z → 0 must
match the twist dimension of the hadron at short dis-
tances x2 → 0. As shown by Polchinski and Strassler,
one can simulate confinement by imposing the condition
φ(z = z0 = 1

ΛQCD
). The corresponding action for string

amplitudes in this AdS space is

S[Φ] = κ′
∫

d4xdz
√

g
[
g"m∂"Φ∗∂mΦ− µ2Φ∗Φ

]
(1)

where [κ′] = L−2.
We can verify the invariance of the full action (1) for

a scalar field Φ with respect to scale transformations

xµ → λxµ, z → λz. (2)

Since √g = R5/z5 and

g"m =
z2

R2
η"m, (3)

it follows that full space action (1) is invariant under the
full space scale transformations (2), since Φ is a scalar
field

Φ(x") = Φ(λx"). (4)

One can obtain expectation values for QCD observ-
ables by constructing the generating functional

L→ L+
∑

I

JI(x)OI(x), (5)

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).
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where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
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=
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The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂
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Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).
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where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
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∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).
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where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
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Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
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(
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. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
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Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function
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∫
dz
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[
(∂zf)2 −M2f2 +

(µR)2
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f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of
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(
1
z3
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)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
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dz
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and given by

f(z) =
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where

α =
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(
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)
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where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
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classical action Sclass is thus
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− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

Variation of S wrt f :

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).
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where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

Normalization in truncated space

P-S Boundary Condition f(z = 1
ΛQCD

) = 0

s(GeV2)

dσ
dt (γp→MB) = F (θcm)
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• Wave equation in AdS for bound state of two scalar partons with conformal dimension ∆ = 2 + L[
z2∂2

z − 3z ∂z + z2M2 − L2 + 4
]
Φ(z) = 0,

with solution

Φ(z) = Ce−iP ·xz2JL(zM).

• For spin-carrying constituents: ∆→ τ = ∆− σ, σ =
∑n

i=1 σi.

• The twist τ is equal to the number of partons τ = n.

• Same form of equation for vector wave equation in AdS with lowest stable solution (µR)2 ≥ −1 and

(µR)2 = (∆− 1)(∆− d− 1) = κ(κ + d− 2).

• Two-quark vector meson described by wave equation[
z2 ∂2

z − 3z ∂z + z2M2 − L2 + 4
]
Φµ(z) = 0,

with solution

Φµ(x, z) = Ce−iP ·xz2JL(zM) εµ.

CAQCD, Minneapolis, May 11-14, 2006 Page 14

Scalar and Vector AdS Fields

• Consider a scalar wave equation on AdSd+1[
z2∂2

z − (d− 1)z ∂z + z2M2 − (µR)2
]
Φ(z) = 0,

with solution

Φ(z) ∼ zd/2J∆− d
2
(zM), (µR)2 = ∆(∆− d).

• For d = 4, lowest stable solution determined by the Breitenlohner-Freedman (B-F) stability bound,
(µR)2 ≥ −4, on the fifth dimensional mass.

• Orbital excitations correspond to higher values of µ. Allowed values determined by the condition that
conformal dimensions are spaced by integers, according to the spectral relation

(µR)2 = ∆(∆− d) = κ(κ + d).

• If lowest stable state corresponds to the lowest orbital, L = 0, then κ = L− 2, ∆ = 2 + L and

(µR)2 = −4 + L2.

CAQCD, Minneapolis, May 11-14, 2006 Page 13

Identify Orbital Angular Momentu$

34

Introduce confinement, break conformal invarianc#

f(z = 1
ΛQCD

) = 0

s(GeV2)

dσ
dt (γp→MB) = F (θcm)
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2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

Substitute f(z) = ( z
R)

3
2 φ(z)

φ(x, Q0) ∝
√

x(1− x)

Hard Exclusive scattering from small b⊥, high
k⊥

f(z = 1
ΛQCD

) = 0

s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7
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where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function

S = −κR3

∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).

2

where OI is a basis of gauge invariant local operators
(definied at the z → 0 boundary), and the JI are ar-
bitrary functions. The AdS/CFT correspondence is for-
mally established in the z → 0 boundary (following Gub-
ser, Klebanov, Polyakov and Witten):

ZAdS [Φ0] =
∫

Φ0

DΦ exp(iS[Φ]) ≡ ZCFT [Φ0]

=
〈

exp
(

i

∫
d4xOΦ0

)〉
. (6)

The boundary values of the non-normalizable mode cou-
ples to the corresponding interpolating hadronic operator
at the AdS boundary.

We now analyze the solution which gives extremum
of the string action. This solution will corresponds to
the classical solution. Taking the variation of (1), δS[Φ],
with respect to Φ gives the classical wave equation for
the scalar field in AdS space

1√
g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0. (7)

The Breitenlohner-Freedman stability condition can be
immediately obtained by examining the z → 0 limit in
the integral in (1). Consider a normalizable mode near
the asymptotic boundary (z → 0)

Φ(z, x)→ z∆ Φ+(x) (8)

Substituting in (1), one sees that one must have ∆ ≥ 2
in order to avoid that the action diverges in the lower z
integration limit.

Hadronic string modes are plane waves along the
Poincaré coordinates with four-momentum Pµ and in-
variant mass PµPµ =M2

Φ(x, z) = e−iP ·xf(z). (9)

Substituting in (1) we find the action function
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∫
dz

z3

[
(∂zf)2 −M2f2 +

(µR)2

z2
f2

]
, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3

∂zf

)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)
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QCD
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1
z3

∂z

)
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f
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1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)
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1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,
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QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
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⊥x(1− x).

Variation gives
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with respect to Φ gives the classical wave equation for
the scalar field in AdS space
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S = −κR3

∫
dz
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, (10)

where [κ] = L2.
Taking the variation of (10) we obtain the equation of

motion

z5∂z

(
1
z3
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)
+ z2M2f − (µR)2f = 0. (11)

Equivalently[
z2∂2

z − 3z∂z + z2M2 − (µR)2
]
f = 0, (12)

with eigenmodes of (12) normalized according to

R3

∫ Λ−1
QCD

0

dz

z3
f2(z) = 1. (13)

and given by

f(z) =
√

2ΛQCD

R3/2Jα+1(βα,k)
z2Jα(zβα,kΛQCD), (14)

where

α =
√

4 + (µR)2. (15)

Integrating (10) by parts we find

S = −κR3

∫ Λ−1
QCD

0

dz

z5
f

[
−z5∂z

(
1
z3

∂z

)
− z2M2 + (µR)2

]
f

+ κR3 lim
z→0

1
z3

f∂zf, (16)

where we have used the boundary condition f(z) → 0
or ∂zf(z) → 0 as z → 1/ΛQCD. The first term in (10)
vanishes by the classical equations of of motion. The
classical action Sclass is thus

Sclass = κR3 lim
z→0

1
z3

f∂zf. (17)

Substituing the normalizable solution (14)

Sclass =


∞, (µR)2 < −4

κΛ2
QCD

J2
1 (β0,k)

, (µR)2 = −4
0, (µR)2 > −4

, (18)

where we have written (µR)2 = −4 + α2. The lowest
possible value (µR)2 = −4 corresponds to α = 0, the
Breitenlohner-Freedman bound.

Upon the substitution φ(z) = (R/z)3/2f(z) we find

S = κ

∫ ΛQCD

0
dz φ

[
−∂2

z −M2 − 1− 4α2

4z2

]
φ+κ lim

z→0
φ∂zφ,

(19)
Finally we integrate by parts (19)

S =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
,

(20)
where we have written κ = 1/Λ2

QCD since it is the only
scale available. In writing (19) we have also identified
the light-front variable ζ, which represents the invariant
separation between quarks, with the holographic variable
z: ζ = z. [1]

Variation of (20) gives the eigenvalue equation [1][
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (21)

with the effective potential V (ζ)→ −(1−4α2)/4ζ2 in the
conformal limit [1]. We have shown that this equation
and solution can be mapped to the light-front formalism
in physical 3 + 1 space time by identifying z2 → ζ2 =
b2
⊥x(1− x).
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The eigenmodes of (21) are normalized according to∫ Λ−1
QCD

0
dζ φ2

α(ζ) = 1. (22)

and are given by

φα(ζ) =
√

2ΛQCD

Jα+1(βα,k)
ζ1/2Jα(ζβα,kΛQCD). (23)

This solution provides the light-front wavefunction of
the meson ψ(x, b⊥) =

√
x(1− x)φ(z) in impact space

in physical space-time using the mapping z → ζ.
We can write (20) as the sum of a ground state contri-

bution plus a term which represents the quantum fluctu-
ation above the ground state S[φ] = Sclass[φ] + Sfluct[φ]

Sclass =
1

Λ2
QCD

∫ Λ−1
QCD

0
dζ

[
(∂ζφ)2 −M2φ2 − 1

4ζ2
φ2

]
,

(24)
and

Sfluct =
α2

Λ2
QCD

∫ Λ−1
QCD

0

dζ

ζ2
φ2. (25)

II. QUANTUM FLUCTUATIONS

To simplify the discussion consider a fully conformal
theory where AdS space is not truncated. We write the
action function as

S = λ

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2

]
. (26)

where λ is an arbitrary constant.
Variation of (37) gives the wave-equation (which in this

case is not an eigenvalue equation to determineM)[
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (27)

with the effective potential V (ζ) = −(1− 4α2)/4ζ2.
The solutions of (27) are given by

φα(ζ) = Cζ1/2Jα(ζM). (28)

The solutions in this case are not normalizable∫ ∞

0
dζ φ2

α(ζ) =∞. (29)

We now write the action function (37) as the sum of
a ground state contribution (the lowest possible state
allowed by the B-F bound), plus a term which repre-
sents the quantum fluctuations above the ground state
S[φ] = Sclass[φ] + Sfluct[φ]

Sclass = λ

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1

4ζ2
φ2

]
, (30)

and

Sfluct = λα2

∫ ∞

0

dζ

ζ2
φ2. (31)

Substituting (28) in the action function (31) represent-
ing the fluctuations above the ground state we find

Sfluct =
λC2α

2
, (32)

where we have used the integral∫ ∞

0

dx

x
J2

α(βx) =
1
2α

. (33)

Since λ is arbitrary we choose C

C =
√

2π

λ
, (34)

Thus, Sfluct = απ. Semiclassical quantization implies
that α is an integer N :

Sfluct = Nπ. (35)

The quantum fluctuations contribute to the equations
of motion, but do not contribute to the functional inte-
gral since the fluctuations are quantized according to the
semiclassical quantization condition (35)

Z[φ] ∼ eiS[φ] = eiSclass[φ]. (36)

III. THE 2-DIM HARMONIC OSCILLATOR
EXAMPLE

We consider the action for a two-dimesional harmonic
oscilator in the transverse plane

S = λ

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1− 4α2

4ζ2
φ2 + k4z2φ2

]
,

(37)
whith λ a constant to be determined latter. Variation of
(37) gives the light-front eigenvalue equation [1][

− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (38)

with the effective potential

V (ζ) = −1− 4α2

4ζ2
+ κ4ζ2. (39)

The eigenmodes of (38) are normalized according to∫ ∞

0
dζ φ2

α(ζ) = 1. (40)

Harmonic Oscillator model
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φα(ζ) = Cζ1/2Jα(ζM). (28)

The solutions in this case are not normalizable∫ ∞

0
dζ φ2
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We now write the action function (37) as the sum of
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allowed by the B-F bound), plus a term which repre-
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Sclass = λ

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1

4ζ2
φ2

]
, (30)

and

Sfluct = λα2

∫ ∞

0

dζ

ζ2
φ2. (31)

Substituting (28) in the action function (31) represent-
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Sfluct =
λC2α

2
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where we have used the integral∫ ∞

0

dx

x
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α(βx) =
1
2α
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Since λ is arbitrary we choose C
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√

2π

λ
, (34)

Thus, Sfluct = απ. Semiclassical quantization implies
that α is an integer N :

Sfluct = Nπ. (35)

The quantum fluctuations contribute to the equations
of motion, but do not contribute to the functional inte-
gral since the fluctuations are quantized according to the
semiclassical quantization condition (35)

Z[φ] ∼ eiS[φ] = eiSclass[φ]. (36)

III. THE 2-DIM HARMONIC OSCILLATOR
EXAMPLE

We consider the action for a two-dimesional harmonic
oscilator in the transverse plane

S = λ
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0
dζ

[
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4ζ2
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whith λ a constant to be determined latter. Variation of
(37) gives the light-front eigenvalue equation [1][
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V (ζ) = −1− 4α2

4ζ2
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0
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and are given by

φα(z) = κα+1

√
2n!

(n + α)!
ζ1/2+αe−κ2z2/2Lα

n

(
κ2z2

)
,

(41)
with eigenvalues

M2 = 2κ2(2n + α + 1). (42)

We can write (37) as the sum of a ground state contri-
bution plus a term which represents the quantum fluctu-
ation above the ground state S[φ] = Sclass[φ] + Sfluct[φ]

Sclass = λ

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1

4ζ2
φ2 + κ4ζ2φ2

]
,

(43)
and

Sfluct = λα2

∫ ∞

0

dζ

ζ2
φ2. (44)

From the integral∫ ∞

0

dζ

ζ2
φ2

α(z) =
κ2

α
, (45)

we find

Sfluct = λκ2α. (46)

Semiclassical quantization of the fluctuations

Sfluct = πL (47)

gives us the conditions

λ =
π

κ2
, α = L. (48)

Thus

S =
π

κ2

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1 − 4L2

4ζ2
φ2 + k4z2φ2

]
.

(49)

IV. THE HELLMANN-FEYNMAN THEOREM
AND REGGE TRAJECTORIES

The LFWF (27) can be writen as an eigenvalue equa-
tion

H(α)|φ(α)〉 = M2(α)|φ(α)〉, (50)

whith H the light-front hermitian operator

H(α) = − d2

dζ2
+ V (α). (51)

For bound states the modes φ(α) are normalizable

〈φ(α)|φ(α)〉 = 1, (52)
and consequently we can aply the Hellmann-Feynman
theorem

dM2(α)
dα2

=
〈

∂V (α)
∂α2

〉
. (53)

For the two-dimensional oscillator example if follows
from (45)

dM2(α)
dα2

=
κ2

α
, (54)

for α integer, α = L. Consequently

M2(L) = const + 2κ2L. (55)
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Solutions 
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with eigenvalues
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bution plus a term which represents the quantum fluctu-
ation above the ground state S[φ] = Sclass[φ] + Sfluct[φ]

Sclass = λ

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1

4ζ2
φ2 + κ4ζ2φ2

]
,

(43)
and

Sfluct = λα2

∫ ∞

0

dζ

ζ2
φ2. (44)

From the integral∫ ∞

0

dζ

ζ2
φ2

α(z) =
κ2

α
, (45)

we find

Sfluct = λκ2α. (46)

Semiclassical quantization of the fluctuations

Sfluct = πL (47)

gives us the conditions

λ =
π

κ2
, α = L. (48)

Thus

S =
π

κ2

∫ ∞

0
dζ

[
(∂ζφ)2 −M2φ2 − 1 − 4L2

4ζ2
φ2 + k4z2φ2

]
.

(49)

IV. THE HELLMANN-FEYNMAN THEOREM
AND REGGE TRAJECTORIES

The LFWF (27) can be writen as an eigenvalue equa-
tion

H(α)|φ(α)〉 = M2(α)|φ(α)〉, (50)

whith H the light-front hermitian operator

H(α) = − d2

dζ2
+ V (α). (51)

For bound states the modes φ(α) are normalizable

〈φ(α)|φ(α)〉 = 1, (52)
and consequently we can aply the Hellmann-Feynman
theorem

dM2(α)
dα2

=
〈

∂V (α)
∂α2

〉
. (53)

For the two-dimensional oscillator example if follows
from (45)

dM2(α)
dα2

=
κ2

α
, (54)

for α integer, α = L. Consequently

M2(L) = const + 2κ2L. (55)
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Eigenvalues

Karch, et al.
z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD

• Normalizable AdS modes Φ(z)
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Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.
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Match fall-off at small z to Conformal Dimension 
of hadron state at short distances

z∆

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

z∆

z0

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

z∆

z0 = 1
ΛQCD

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)
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Guy de Teramond
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Fig: Light meson orbital spectrum ΛQCD = 0.32 GeV
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Baryon Spectrum

• For spin-carrying constituents: ∆→ τ = ∆− σ, σ =
∑n

i=1 σi.

• For a three quark state ∆ → ∆ − 3/2. Change compensated in µ by the shift k → L − 1 and
Ψ(z)→ z−

1
2 Ψ(z).

• Three-quark baryon described by wave equation (d = 4, κ = 0)[
z2 ∂2

z − 3z ∂z + z2M2 − L2
± + 4

]
f±(z) = 0

with L+ = L + 1, L− = L + 2, and solution

Ψ(x, z) = Ce−iP ·xz2
[
J1+L(zM) u+(P ) + J2+L(zM) u−(P )

]
.

• 4-d mass spectrumΨ(x, zo)± = 0 =⇒ parallel Regge trajectories for baryons !

M+
α,k = βα,kΛQCD, M−

α,k = βα+1,kΛQCD.

• Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

CAQCD, Minneapolis, May 11-14, 2006 Page 19

Baryon Spectrum

Wave Equation :

Spinor AdS Fields

• Baryon: twist-three, dimension ∆ = 9
2 + L

O 9
2+L = ψD{!1 . . . D!qψD!q+1 . . .D!m}ψ, L =

m∑
i=1

"i.

• Solve full 10-dim Dirac Eq., /DΨ̂ = 0, since baryons are charged under SU(4) ∼ SO(6).
Baryon number conservation?

• Ψ̂ is expanded in terms of eigenfunctions ηκ(y) of the Dirac operator on compact space X

with eigenvalues λκ:

Ψ̂(x, z, y) =
∑

κ

Ψκ(x, z)ηκ(y).

• From the 10-dim Dirac equation, /DΨ̂ = 0:[
z2 ∂2

z − d z ∂z + z2M2 − (λκ + µ)2R2 +
d

2

(
d

2
+ 1

)
+ (λκ + µ)R Γ̂

]
f(z) = 0,

i /DXη(y) = λ η(y),

whereΨ(x, z) = e−iP ·x f(z), PµPµ =M2 and Γ̂u± = ±u± ( For d = 4, Γ̂ = γ5).

CAQCD, Minneapolis, May 11-14, 2006 Page 17
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Guy de Teramond
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Only one 
parameter! 

Entire light 
quark baryon 

spectrum

Predictions 
of  AdS/CFTAdS/QCD G. F. de Téramond
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Glueball Spectrum

• AdS wave function with effective mass µ:[
z2 ∂2

z − (d− 1)z ∂z + z2 M2 − (µR)2
]
f(z) = 0,

where Φ(x, z) = e−iP ·x f(z) and PµPµ =M2.

• Glueball interpolating operator with twist -dimension minus spin- two, and conformal dimen-
sion ∆ = 4 + L

O4+L = FD{!1 . . . D!m}F,

where L =
∑m

i=1 "i is the total internal space-time orbital momentum.

• Normalizable scalar AdS mode ( d = 4):
Φα,k(x, z) = Cα,ke

−iP ·xz2Jα (z βα,aΛQCD)

with α = 2 + L and scaling dimension ∆ = 4 + L.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 1341
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Glueball Regge trajectories from gauge/string duality and the

Pomeron

Henrique Boschi-Filho,∗ Nelson R. F. Braga,† and Hector L. Carrion‡

Instituto de F́ısica, Universidade Federal do Rio de Janeiro,

Caixa Postal 68528, RJ 21941-972 – Brazil

Abstract

The spectrum of light baryons and mesons has been reproduced recently by Brodsky and Tera-

mond from a holographic dual to QCD inspired in the AdS/CFT correspondence. They associate

fluctuations about the AdS geometry with four dimensional angular momenta of the dual QCD

states. We use a similar approach to estimate masses of glueball states with different spins and

their excitations. We consider Dirichlet and Neumann boundary conditions and find approximate

linear Regge trajectories for these glueballs. In particular the Neumann case is consistent with the

Pomeron trajectory.

PACS numbers: 11.25.Tq ; 12.38.Aw ; 12.39.Mk .

∗Electronic address: boschi@if.ufrj.br
†Electronic address: braga@if.ufrj.br
‡Electronic address: mlm@if.ufrj.br
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FIG. 1: Approximate linear Regge trajectory for Neumann Boundary con-

dition for the states 2++ , 4++ , 6++ , 8++ , 10++ .

5 10 15 20 25 30 

2 

4 

6 

8 

10 

J
 

M 
2 
  (Gev 

2 
) 

FIG. 2: Approximate linear Regge trajectory for Dirichlet Boundary condi-

tion for the states 2++ , 4++ , 6++ , 8++ , 10++ .

This result shows that the Neumann boundary condition seems to work better than

Dirichlet for glueballs in this holographic model. Both choices correspond to vanishing flux

for bulk scalar fields at z = zmax and would be physically acceptable conditions. It is

interesting to note that similar Neumann conditions appear in the Randall Sundrum model

[39] as a consequence of the orbifold condition.
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Dirichlet for glueballs in this holographic model. Both choices correspond to vanishing flux
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interesting to note that similar Neumann conditions appear in the Randall Sundrum model

[39] as a consequence of the orbifold condition.
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Hadronic Form Factor in Space and Time-Like Regions
SJB and GdT in preparation

• The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming

and outgoing hadron ΦI and ΦF and the non-normalizable mode J , dual to the external

source (hadron spin σ):

F (Q2)I→F = R3+2σ
∫ ∞

0

dz

z3+2σ
e(3+2σ)A(z)ΦF (z) J(Q, z) ΦI(z)

! R3+2σ
∫ zo

0

dz

z3+2σ
ΦF (z) J(Q, z) ΦI(z),

• J(Q, z) has the limiting value 1 at zero momentum transfer, F (0) = 1, and has as boundary
limit the external current, Aµ = εµeiQ·xJ(Q, z). Thus:

lim
Q→0

J(Q, z) = lim
z→0

J(Q, z) = 1.

• Solution to the AdS Wave equation with boundary conditions at Q = 0 and z → 0:

J(Q, z) = zQK1(zQ).

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 2143
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

44

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)
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AdS/QCD G. F. de Téramond
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Space-like pion form factor in holographic model for ΛQCD = 0.2 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 29

45

Data Compilation from Baldini, Kloe and Volmer



 
 Stan Brodsky,  SLAC

AdS/QCDInstitute for Nuclear Theory
April 11, 2007 46

Holographic Pion Form Factor

SJB and GdT

09/13/2006

1 The Pion Form Factor in the Gaussian Model

The form factor in AdS is the overlap of the normalizable modes dual to the incoming

and outgoing hadrons ΦP and ΦP ′ with the non-normalizable mode J(Q, z) dual to

the external source

F (Q2) = R3

∫ ∞

0

dz

z3
ΦP ′(z)J(Q, z)ΦP (z). (1)

The pion string mode Φ in the Gaussian model is

Φ(z) =

√
2κ

R3/2
z2e−κ2z2/2. (2)

In the interaction picture, where we neglect confinement of qq virtual pairs in the

electromagnetic current as it propagates inside the AdS cavity, J(Q, z) is the solution

of a vector AdS wave equation

J(Q, z) = zQK1(zQ). (3)

The form factor (1) has a closed form solution

F (Q2) = 1 +
Q2

4κ2
exp

(
Q2

4κ2

)
Ei

(
− Q2

4κ2

)
, (4)

where Ei is the exponential integral

Ei(−x) =

∫ x

∞
e−t dt

t
. (5)

For large transverse momentum Q2 we use the the asymptotic expansion of Ei(−x)

−Ei(−x) =
e−x

x

(
1− 1

x
+

2!

x2
+ . . .

)
. (6)
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Figure 1: Space-like pion form factor in a holographic AdS Gaussian-modified-metric

model for κ = 0.4 GeV (red curve). The blue curve corresponds to the truncated

space holographic model for ΛQCD = 0.2 GeV.

We find at large Q2

F (Q2)→ 4κ2

Q2
, (7)

and we recover the dimensional counting rule! It is remarkable that even if the

hadronic mode (2) is Gaussian, its leads to hard power behavior for the form factor

at large momentum transfer.

We show in Figure 1 the behavior of the spacelike pion form factor in the Gaussian

model (red curve). The results are almost indistinguishable from the hard wall model

results (blue curve).

2 Mapping to QCD LFWF

From the holographic mapping to LFWF∣∣∣ψ̃(x, ζ)
∣∣∣2 =
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,
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π

√
x(1− x) e−
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However J/ψ → ρπ
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Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Truncated Space Confinement
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One parameter -  set by pion decay constan!

Data Compilation from Baldini, Kloe and Volmer
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Spacelike and Timelike Pion form factor from AdS/CFT

G. de Teramond, sjb 
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√
x(1− x)

φM(x) ≡ ∫
d2k⊥ψM(x,&k⊥) ∝ fM

√
x(1− x)

Log H » Fp  Hq2L »L k = 0.38

-10 -5 0 5 10

-3

-2

-1

0

1

2

q2

Untitled-2 1

lnFπ(q2)

κ = 0.364 GeV

κ = 0.424 GeV

κ = 0.38 GeV

τ = t + z/c

φ(x, Q0) ≡
∫ Q0 d2k⊥ψ(x,&k⊥) ∝ fM

√
x(1− x)

φM(x) ≡ ∫
d2k⊥ψM(x,&k⊥) ∝ fM

√
x(1− x)



 
 Stan Brodsky,  SLAC

AdS/QCDInstitute for Nuclear Theory
April 11, 2007 49

Spacelike and Timelike Pion form factor from AdS/CFT
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Baryon Form Factors

• Coupling of the extended AdS mode with an external gauge field Aµ(x, z)

ig5

∫
d4x dz

√
g Aµ(x, z) Ψ(x, z)γµΨ(x, z),

where

Ψ(x, z) = e−iP ·x [ψ+(z)u+(P ) + ψ−(z)u−(P )] ,

ψ+(z) = Cz2J1(zM), ψ−(z) = Cz2J2(zM),

and

u(P )± =
1± γ5

2
u(P ).

• In the large P+ limit

ψ+(z) ≡ ψ↑(z), ψ−(z) ≡ ψ↓(z),

the LC± spin projection along ẑ.

• Constant C determined by charge normalization:

C =
√

2ΛQCD

R3/2 [−J0(β1,1)J2(β1,1)]1/2
.

CAQCD, Minneapolis, May 11-14, 2006 Page 26
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AdS/QCD G. F. de Téramond

• Consider the spin non-flip form factors in the infinite wall approximation

F+(Q2) = g+R3
∫

dz

z3
J(Q, z) |ψ+(z)|2,

F−(Q2) = g−R3
∫

dz

z3
J(Q, z) |ψ−(z)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(z) and ψ−(z) correspond
to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) = R3

∫
dz

z3
J(Q, z)|ψ+(z)|2,

Fn
1 (Q2) = −1

3
R3

∫
dz

z3
J(Q, z)

[|ψ+(z)|2 − |ψ−(z)|2] ,

where F p
1 (0) = 1, Fn

1 (0) = 0.

• LargeQ power scaling: F1(Q2)→ [
1/Q2

]2
.

Caltech High Energy Seminar, Feb 6, 2006 Page 31

Nucleon Form Factors 
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JADE determination of αs(MZ)
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√
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z3Φ
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F (z)J(Q, z)Φ↑I(z)
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Harmonic Osci#ator Confinemen!

Truncated Space Confinement
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G. de Teramond, sjb 
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Dirac Neutron Form Factor

(Valence Approximation)

Q4Fn
1 (Q2) [GeV4]
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Prediction for Q4Fn
1 (Q2) for ΛQCD = 0.21 GeV in the hard wall approximation. Data analysis from

Diehl (2005).

CAQCD, Minneapolis, May 11-14, 2006 Page 29
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Dirac’s Amazing  Idea:
The  “Front Form”

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!
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Evolve in 
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1Remarkable new insights from AdS/CFT, the duality between    
conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 
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ψ(x,k⊥)

HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c
Light-Front Wavefunctions

Intrinsic gluons, sea quarks, asymmetries

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1

n
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

Mapping between LF(3+1) and AdS5

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic radial equation:

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent
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Figure 8: Asymptotic effective partonic density 2πρ(x, b⊥, Q → ∞) in terms of the
longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.
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Figure 9: LFWF ψ(x, b) for the truncated space model (left) and for the HO model
(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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ψ(σ, b⊥)

σ = y−P+

2

|b⊥|

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

ψ(σ, b⊥)

σ = y−P+

2

|b⊥|(GeV−1)

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

AdS/CFT  Holographic Model

3-dimensional photograph:
meson LFWF at fixed LF Time

G. de Teramond
SJB 

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z
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Example: Evaluation of QCD Matrix Elements

• Pion decay constant fπ defined by the matrix element of EW current J+
W :〈

0
∣∣ψuγ+(1− γ5)ψd

∣∣ π−
〉

= i
√

2P+fπ,

with ∣∣π−〉
= |du〉 =

1√
NC

1√
2

NC∑
c=1

(
b†c d↓d

†
c u↑ − b†c d↑d

†
c u↓

) ∣∣0〉
.

• Use light-cone expression:

fπ = 2
√

NC

∫ 1

0
dx

∫
d2$k⊥
16π3

ψqq/π(x, k⊥).

Lepage and Brodsky ’80

• Find:

fπ =
√

3ΛQCD

8J1(β0,1)
= 83.4 Mev,

for ΛQCD = 0.2 GeV (fixed from the pion FF).

Experiment: fπ = 92.4 Mev.

Séminaire Ecole Polytechnique, 25 Juillet 2006 Page 39
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The LFWF in !k⊥ space is the Fourier transform

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ei!b⊥·!k⊥ψ̃(x,!b⊥)

= 4π3/2

∫ ∞

0

J0(kb)ψ̃(x, b). (9)

We find

ψqq/π(x,!k⊥) =
4π

κ
√

x(1− x)
e
− !k2⊥

2κ2x(1−x) . (10)

an exponential, but not a power-law fall off for the LFWF at high momentum transfer.

Note: The LFWF in !b⊥ (8) and !k⊥ (10) space are properly normalized according

to ∫
dx

∫
d!k⊥
16π3

∣∣∣ψ(x,!k⊥)
∣∣∣2 =

∫
dx

∫
d!b⊥

∣∣∣ψ̃(x,!b⊥)
∣∣∣2 = 1. (11)

3 The Pion Decay Constant

From the light-cone expression:

fπ = 2
√

NC

∫ 1

0

dx

∫
d2!k⊥
16π3

ψqq/π(x,!k⊥)

= 2
√

NC

∫ 1

0

dx φ(x,Q2 →∞), (12)

with

φ(x,Q2) =

∫ Q2
d2!k⊥
16π3

ψ(x,!k⊥) (13)

we find for (10) the result

fπ =

√
3κ

8
= 86.6 Mev, (14)

for κ = 0.4 GeV. This value is to be compared with the experimental value fπ = 92.4

Mev.

The distribution amplitude φ(x) ≡ φ(x, Q2 →∞) is

φ(x) =
4√
3π

fπ

√
x(1− x). (15)
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

The hadron state |Ψh〉 is expanded in a Fock-
state complete basis of non-interacting n-
particle states |n〉 with an infinite number of
components

∣∣∣Ψh(P
+, !P⊥)

〉
=

∑
n,λi

∫
[dxi d2!k⊥i]ψn/h(xi,!k⊥i, λi)

× |n : xiP
+, xi

!P⊥ + !k⊥i, λi〉

measure of the phase space integration is
defined by

[dxi d2!k⊥i] = (16π3) δ

1−
n∑

j=1
xj

 δ(2)

 n∑
$=1

!k⊥$

 n∏
i=1

dxi

xi

d2!k⊥i

16π3 ,

(3)
and a normalized hadronic state 〈ψ|ψ〉 = 1,
can be expressed as a sum of overlap inte-
grals of light-front wavefunctions∑

n

∫
[dxi d2!k⊥i] |ψn/h(xi,!k⊥i, λi)|2 = 1. (4)
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation
Light-Front QCD
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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LIGHT-FRONT SCHRODINGER EQUATION
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs
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Hadronization at the Amplitude Level
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General remarks about orbital angular mo-
mentum

!R⊥
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General remarks about orbital angular mo-
mentum
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Light-Front Wavefunctions
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ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 
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Hadronization at the Amplitude Level
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Hadronization at the Amplitude Level
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Large Rapidity Gap Events 
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Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = |yH − yX |

C= +    Gluonium Trajectory 

Bjorken, Lu, sjb
Kopeliovich, 
Schmidt, sjb

e+e− → H+H−+ X

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |

e+e− → H+H−+ X

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |
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Hadronization at the Amplitude Level
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H+H− asymmetry from Odderon-Pomeron
interference

Crossing analog of Diffractive DIS

eH → eH + X
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H−

Large ∆y = |yH − yX |

C= -    Gluonium Trajectory 

Kopeliovich, 
Schmidt, sjb
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i(k1 ∂
∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
2

〉 → ∣∣+ 1
2

+ 1〉 + 1
2

+1 −1∣∣+ 1
2

〉 → ∣∣− 1
2

+ 1〉 − 1
2

+1 0∣∣+ 1
2

〉 → ∣∣+ 1
2

− 1〉 + 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

A+=0 gauge: No unphysical degrees of freedom

Nonzero Anomalous Moment requires
Nonzero orbital angular momentu$
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑
a

∫
[dx][d2k⊥]

∑
j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)− 1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡ ∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]
16π3δ

(
1−

n∑
i=1

xi

)
δ(2)

(
n∑

i=1

k⊥i

)
, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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6

Drell, sjb
A(σ,∆⊥) = 1

2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

79

Hwang, Schmidt, sjb; 
Holstein et al

Okun et al:  B(0) Must vanish because of 
Equivalence Theorem 



 
 Stan Brodsky,  SLAC

AdS/QCDInstitute for Nuclear Theory
April 11, 2007 80

Electric Dipole Form Factor on the Light Front

We consider the electric dipole form factor F3(q2) in the light-front
formalism of QCD, to complement earlier studies of the Dirac and Pauli
form factors. [Drell, Yan, PRL 1970; West, PRL 1970; Brodsky, Drell, PRD 1980]

Recall

〈P ′, S′
z |Jµ(0)|P, Sz〉 =

Ū(P ′,λ′)
[

F1(q2)γµ + F2(q2)
i

2M
σµαqα + F3(q2)

−1
2M

σµαγ5qα

]
U(P,λ)

We ignore the anapole form factor and define

κ =
e

2M
[F2(0)] , d =

e
M

[F3(0)]

κ d
[Bigi, Uralstev, NPB 1991]

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 18
Gardner, Hwang, sjb, 
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Electromagnetic Form Factors on the Light Front

Interaction picture for J+(0), q+ = 0 frame, and assumed simple vacuum
imply (qR/L ≡ q1 ± iq2):

F2(q2)

2M
=

∑
a

∫
[dx ][d2k⊥]

∑
j

ej
1
2
×

[
− 1

qL ψ↑∗
a (xi , k′⊥i ,λi) ψ↓

a(xi , k⊥i ,λi) +
1

qR ψ↓∗
a (xi , k′⊥i ,λi) ψ↑

a(xi , k⊥i ,λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx ][d2k⊥]

∑
j

ej
i
2
×

[
− 1

qL ψ↑∗
a (xi , k′⊥i ,λi) ψ↓

a(xi , k⊥i ,λi)− 1
qR ψ↓∗

a (xi , k′⊥i ,λi) ψ↑
a(xi , k⊥i ,λi)

]
,

k′⊥j = k⊥j + (1− xj)q⊥ for the struck constituent j and k′⊥i = k⊥i − xiq⊥ for
each spectator (i $= j). q+ = 0 =⇒ only n′ = n.
Both F2(q2) and F3(q2) are helicity-flip form factors.

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 19Gardner, Hwang, sjb, 
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F3(q
2) = F2(q

2)× tanφ

Fock state by Fock state

QCD → QED

in limit NC → 0

F3(q
2) = F2(q

2)× tanφ

Fock state by Fock state

QCD → QED

in limit NC → 0

Gardner, Hwang, sjb, 
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Hadronic Form Factor in Space and Time-Like Regions
SJB and GdT in preparation

• The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming

and outgoing hadron ΦI and ΦF and the non-normalizable mode J , dual to the external

source (hadron spin σ):

F (Q2)I→F = R3+2σ
∫ ∞

0

dz

z3+2σ
e(3+2σ)A(z)ΦF (z) J(Q, z) ΦI(z)

! R3+2σ
∫ zo

0

dz

z3+2σ
ΦF (z) J(Q, z) ΦI(z),

• J(Q, z) has the limiting value 1 at zero momentum transfer, F (0) = 1, and has as boundary
limit the external current, Aµ = εµeiQ·xJ(Q, z). Thus:

lim
Q→0

J(Q, z) = lim
z→0

J(Q, z) = 1.

• Solution to the AdS Wave equation with boundary conditions at Q = 0 and z → 0:

J(Q, z) = zQK1(zQ).

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 2183
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Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
∑

q

eq

∫ 1

0
dx

∫
d2!k⊥
16π3

ψ∗P ′(x,!k⊥ − x!q⊥) ψP (x,!k⊥).

• Fourrier transform to impact parameter space!b⊥

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ ei!b⊥·!k⊥ψ̃(x,!b⊥)

• Find (b = |!b⊥|) :

F (q2) =
∫ 1

0
dx

∫
d2!b⊥ eix!b⊥·!q⊥∣∣ψ̃(x, b)

∣∣2
= 2π

∫ 1

0
dx

∫ ∞

0
b db J0 (bqx)

∣∣ψ̃(x, b)
∣∣2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33
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• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x,"b⊥) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0

(√
x(1− x)|"b⊥|β0,1ΛQCD

)
θ

(
"b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)

the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !

Caltech High Energy Seminar, Feb 6, 2006 Page 34

Identical DYW and AdS5 Formulae: Two parton cas#
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• Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

F (q2) =
∫ 1

0
dx

∫
d2!η⊥ei!η⊥·!q⊥ ρ̃(x, !η⊥)

• From DYW expression for the FF in transverse position space:

ρ̃(x, !η⊥) =
∑
n

n−1∏
j=1

∫
dxj d2!b⊥j δ(1− x−

n−1∑
j=1

xj) δ(2)(
n−1∑
j=1

xj
!b⊥j − !η⊥)|ψn(xj ,!b⊥j)|2

• Compare with the the form factor in AdS space for arbitrary Q:

F (Q2) = R3
∫ ∞

0

dz

z3
e3A(z)ΦP ′(z) J(Q, z) ΦP (z)

• Holographic variable z is expressed in terms of the average transverse separation distance of the

spectator constituents !η =
∑n−1

j=1 xj
!b⊥j

z =
√

x

1− x

∣∣ n−1∑
j=1

xj
!b⊥j

∣∣

Caltech High Energy Seminar, Feb 6, 2006 Page 38
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

Mapping between LF(3+1) and AdS5

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)

00.5
1

1
2
3
4

5

0

2

4

0

00.5
1

1
2
3
4

5

1

2

0

FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely
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from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Effective radial equation:

General solution:

G. de Teramond and sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R
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Two-parton holographic LFWF in impact space ψ̃(x, ζ) for ΛQCD = 0.32 GeV: (a) ground state
L = 0, k = 1; (b) first orbital exited state L = 1, k = 1; (c) first radial exited state L = 0, k = 2.
The variable ζ is the holographic variable z = ζ = |b⊥|√x(1− x).
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• Change the integration variable ζ = |"b⊥|√x(1− x)

F (Q2) = 2π

∫ 1

0

dx

x(1− x)

∫ ζmax=Λ−1
QCD

0
ζ dζ J0

(
ζQx√

x(1− x)

)∣∣ψ̃(x, ζ)
∣∣2,

• Compare with AdS form factor for arbitrary Q. Find:

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQx√

x(1− x)

)
= ζQK1(ζQ),

the solution for the electromagnetic potential in AdS space, and

ψ̃(x, ζ) =
ΛQCD√
πJ1(β0,1)

√
x(1− x)J0 (ζβ0,1ΛQCD) θ

(
z ≤ Λ−1

QCD

)
the holographic LFWF for the valence Fock state of the pion ψqq/π .

• The variable ζ , 0 ≤ ζ ≤ Λ−1
QCD, represents the scale of the invariant separation between quarks

and is also the holographic coordinate ζ = z !
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Figure 8: Asymptotic effective partonic density 2πρ(x, b⊥, Q → ∞) in terms of the
longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.

0
0.2

0.4

0.6

0.8

1

0 5 10 15

0

0.05

0.1

0.15

0
0.2

0.4

0.6

0.8

10 15

0
0.2

0.4

0.6

0.8

1

0 5 10 15

0

0.05

0.1

0.15

0.2

0
0.2

0.4

0.6

0.8

10 15

Figure 9: LFWF ψ(x, b) for the truncated space model (left) and for the HO model
(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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where

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
− κ2ζ

)
, (66)

and its adjoint

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
, (67)

with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=
2ν + 1

ζ2
− 2κ2. (68)

Since the Hamiltonian is a bilinear form, its eigenvalues are positive definite.

Consequently

M2 ≥ 0 if ν2 ≥ 0. (69)

For ν2 < 0 we repeat the analysis of Sect. 2.5 to obtain the relation

〈φ ∣∣Hλ
LF

∣∣ φ〉 ≥ 2µ2

∫
dζ
|φ|2
ζ2

. (70)

Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2κ2(ν + 1) +M2

)
φν(ζ) = 0, (72)

follows from the eigenvalue equation (64). As in Sect. 2.2 we define the operator

b†ν = −iΠν . Thus

bν =
d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (73)

11
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2.10 Self-Adjoint Operators and Boundary Conditions

The adjoint A† of an operator A is defined by∫
dxφ∗A†χ =

∫
dx(Aφ)∗χ. (60)

For example (
d

dx

)†
= − d

dx
. (61)

Consider the expectation value of the kinetic energy operator T = − d2

dx2 in the

finite interval 0 ≤ x ≤ a∫ a

0

dxφ∗
(
− d2

dx2

)
φ =

∫
dx

∣∣∣∣dφ

dx

∣∣∣∣2 − [
φ∗dφ

dz

]a

0

. (62)

The operator T is self-adjoint or hermitian T = T † if φ or dφ
dx vanishes at x = 0 or

x = a. In an interval 0 ≤ x ≤ ∞ the wave function or its derivative must vanish at

infinity: φ(x)→ 0 or dφ(x)
dx → 0 as x→∞.

3 The Transverse Harmonic Oscillator Holographic

Model: Mesons

We consider a transverse oscillator model of holographic confinement where a ζ2 term

is added to the conformal effective potential. We write the effective Hamiltonian

Hν
LF (ζ) = − d2

dζ2
− 1− 4ν2

4ζ2
+ κ4ζ2 + 2(ν + 1)κ2, (63)

The constant term 2(ν + 1)κ2 is introduced so that the Hamiltonian is expressible

exactly as a product of operators. The spectrum of hadronic mass eigenstates is

determined by the eigenvalue equation

Hν
LF φν =M2

νφν . (64)

If ν2 > 0 the light-front Hamiltonian (63) can be expressed as

Hν
LF = Π†

νΠν , (65)
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Consequently for ν2 < 0 the Hamiltonian is not bounded from below and the expec-

tation values of the Hamiltonian are negative. Thus

M2 ≤ 0 if ν2 < 0. (71)

The critical value corresponds to ν = 0. The quantum-mechanical stability condi-

tions for the transverse harmonic oscillator described here are also equivalent to the

stability conditions which follow from the Breitenlohner-Freedman bound [3].

3.1 Ladder Construction of States

The wave equation(
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)

12
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with hermitian conjugate

b†ν = − d

dζ
+

ν + 1
2

ζ
+ κ2ζ, (74)

and commutation relations

[
bν(ζ), b†ν(ζ)

]
=

2ν + 1

ζ2
− 2κ2. (75)

Since the relation

b†νbν = bν+1b
†
ν+1, (76)

also holds for the Hamiltonian (63), we can repeat the analysis of Sect. 2.2. In

particular the operator b†ν acts as the creation operator of a state with an additional

quantum ν. Thus

b†ν |ν〉 = cν |ν + 1〉, (77)

or (
− d

dζ
+

ν + 1
2

ζ
+ κ2ζ

)
φν(ζ) = cνφν+1(ζ). (78)

with cν a constant. Writing

φν(z) = Cz1/2+νe−κ2ζ2/2Gν(ζ), (79)

and substituting in (78) we get

2xGν(x)−G′(x) = xGν+1(x), (80)

with x = κζ, a relation which defines the associated Laguerre function Lν+1
n (x2) in

terms of Lν
n(x2)

2xLν
n(x2)− dLν

n(x2)

dx
= xLν+1

n (x2). (81)

Thus

φν(z) = Cνz
1/2+νe−κ2ζ2/2Lν

n(κ2ζ2). (82)

It can also be shown that

bν |ν + 1〉 ∼ |ν〉, (83)
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In the ζ light-front coordinate representation

φL(ζ) = cL〈ζ|L〉 = 〈ζ|(b†)L|0〉 (93)

= CL

(
− d

dζ
+

1

2ζ
+ κ2z

)L

ζ1/2e−κ2ζ2/2, (94)

Thus

φL(ζ) = CLζ1/2+Le−κ2ζ2/2, (95)

with

CL = κ1+L

√
2

L!
(96)

The solutions φL are eigenfunctions of the light-front equation [1][
− d2

dζ2
− 1− L2

4ζ2
+ κ4ζ2 + 2κ2(L + 1)

]
φ(z) = M2φ(ζ). (97)

with L = 0,±1,±2, · · · . The same procedure applies for a state with arbitrary n.

3.4 Holographic Meson Spectrum

The normalizable solution to (97) including the radial nodes is

φL(ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
, (98)

with eigenvalues

M2 = 4κ2(n + ν + 1). (99)

To reproduce the data for mesons one has to redefine the vacuum energy by

shifting the values of M2:

M2 →M2 − 2κ2, (100)

thus

M2 = 4κ2(n + ν +
1

2
). (101)

The J = L + 1 leading Regge trajectory for the ρ − ω states is shown in Fig. 3.

The linear prediction from (101) corresponds to κ % 0.54 GeV.

14
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Figure 3: J = L + 1 vector meson Regge trajectory for κ ! 0.54 GeV.

4 Truncated-Space Holographic Model: Baryons

We consider an effective light-front Dirac equation to describe a baryonic state in

holographic QCD. In the conformal limit

αΠ(ζ)ψ(ζ) = Mψ(ζ), (102)

where Π is the matrix valued (non-hermitian) generalized momentum

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γζ

)
. (103)

If the operator αΠ is self-adjoint then its eigenvalue M is real. The conditions

(αΠ)† = αΠ, (104)

(αΠ)2 = M2, (105)

imply that

α† = α, α2 = 1, (106)

γ†
ζ = γζ , γ2

ζ = 1, (107)

{α, γζ} = 0. (108)

Consequently the matrices α and γζ are four dimensional Dirac matrices.
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15

4.1 Two-Component Dirac Equation

The plus and minus chirality components are not independent since they must obey

the first order Dirac equation (102). We use the Weyl representation where γ5 is

diagonal. Using the 2 × 2 representation of the Dirac matrices given in Section 4.3

we find (
0 − d

dζ
d
dζ 0

)(
ψ+

ψ−

)
−

(
0

ν+ 1
2

ζ
ν+ 1

2
ζ 0

)(
ψ+

ψ−

)
=M

(
ψ+

ψ−

)
, (119)

which is equivalent to the system of coupled linear equations

− d

dζ
ψ− − ν + 1

2

ζ
ψ− = Mψ+, (120)

d

dζ
ψ+ − ν + 1

2

ζ
ψ+ = Mψ−. (121)

Solving the linear equation (121) using the relation between Bessel functions

Jν+1(x) =
ν

x
Jν(x)− J ′

ν(x), (122)

it follows that

ψ+(ζ) = C
√

zJν(ζM),

ψ−(ζ) = −C
√

zJν+1(ζM).

The solution to (102) can thus be written as

ψ(ζ) = C
√

ζ [Jν(ζM)u+ + Jν+1(ζM)u−] , (123)

with

u+ =
1√
2


1

1

0

0

 , u− =
1√
2


0

0

−1

−1

 . (124)

Notice that we could have solved initially the linear Dirac equation (120) and use

the relation between Bessel functions(
d

dx
+

ν + 1
2

x

)
φν+1(x) = cνφν(x), (125)

to obtain identical results.

17
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4.6 Stability of Solutions

Using the positivity of the product

〈ψ|d†d|ψ〉 ≥ 0, (144)

there follows

M2 ≥ 0, if ν2 ≥ 0, (145)

identical to the Breitenlohner-Freedman bound for the scalar case. Thus in principle

a twist-dimension two baryon is allowed by holographic considerations.

4.7 AdS Dirac Equation

Identical results can also be obtained starting from the solution of the Dirac equation

in AdS space

(/D − µR)Ψ(x, z) = 0, (146)

where µ is the fifth dimensional mass. The solution to (146) is [7]

Ψ(z) = Ce−iP ·x [Ψ+(z)U+(P ) + Ψ−(z)U−(P )] , (147)

with

U− =
γµPµ

P
U+. (148)

The physical solutions have plane waves and chiral spinors U(P )± along the Poincaré

coordinates and hadronic invariant mass states PµP µ = M2.

5 Harmonic Oscillator Holographic Model: Baryons

We write the Dirac equation

(αΠ(ζ)−M) ψ(ζ) = 0, (149)

in terms of the matrix-valued operator Π and its adjoint Π†

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γ5 − κ2ζγ5

)
, (150)

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
γ5 + κ2ζγ5

)
, (151)

22
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coordinates and hadronic invariant mass states PµP µ = M2.

5 Harmonic Oscillator Holographic Model: Baryons

We write the Dirac equation

(αΠ(ζ)−M) ψ(ζ) = 0, (149)

in terms of the matrix-valued operator Π and its adjoint Π†

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γ5 − κ2ζγ5

)
, (150)

Π†
ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ
γ5 + κ2ζγ5

)
, (151)

22

diagonal. Using the 2 × 2 representation of the Dirac matrices given in Section 4.3

we find(
0 − d

dζ
d
dζ 0

)(
ψ+

ψ−

)
−

(
0

ν+ 1
2

ζ + κ2ζ
ν+ 1

2
ζ + κ2ζ 0

)(
ψ+

ψ−

)
=M

(
ψ+

ψ−

)
, (161)

which is equivalent to the system of coupled linear equations

− d

dζ
ψ− − ν + 1

2

ζ
ψ− − κ2ζψ− = Mψ+, (162)

d

dζ
ψ+ − ν + 1

2

ζ
ψ+ − κ2ζψ+ = Mψ−. (163)

Solving for example the linear coupled equation (163) using as input the ψ+ solu-

tion

ψ+(ζ) = Cz
1
2+νe−κ2ζ2/2Lν

n

(
κ2ζ2

)
, (164)

we find

ψ−(ζ) = −C
κζ√

n + ν + 1
z

1
2+νe−κ2ζ2/2Lν+1

n

(
κ2ζ2

)
, (165)

where we have used the relation

Lν+1
n−1(x) + Lν

n(x) = Lν+1
n (x), (166)

between associated Laguerre functions Lν
n.

The solution to (149) can thus be written as

ψ(ζ) = Cz
1
2+νe−κ2ζ2/2

[
Lν

n

(
κ2ζ2

)
u+ +

κζ√
n + ν + 1

Lν+1
n

(
κ2ζ2

)
u−

]
, (167)

with

u+ =
1√
2


1

1

0

0

 , u− =
1√
2


0

0

−1

−1

 . (168)

If we take as starting point the linear coupled equation we find identical results.

24

Coupled Equations
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4.6 Stability of Solutions

Using the positivity of the product
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there follows

M2 ≥ 0, if ν2 ≥ 0, (145)
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with commutation relations[
Πν(ζ), Π†

ν(ζ)
]

=

(
2ν + 1

ζ2
− 2κ2

)
γ5. (152)

Since the operator αΠ is self-adjointM is real. Each component satisfies the Dirac

wave equation (
HLF −M2

)
ψ(ζ) = 0, (153)

where the effective light-front Hamiltonian HLF = Π†Π is given by

HLF = − d2

dζ2
+

(
ν + 1

2

)2

ζ2
− ν + 1

2

ζ2
γ5 + κ4ζ2 + κ2(2ν + 1) + κ2γ5. (154)

The light-front wave equation (153)

HLF ψ± =M2ψ±, (155)

leads to the uncoupled light-front wave equations(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2(ν + 1)κ2 +M2

)
ψ+(ζ) = 0, (156)(

d2

dζ2
+

1− 4(ν + 1)2

4ζ2
− κ4ζ2 − 2νκ2 +M2

)
ψ−(ζ) = 0, (157)

with solutions

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2), (158)

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2), (159)

and eigenvalues

M2 = 4κ2(n + ν + 1), (160)

identical for both plus and minus eigenfunctions.

5.1 Two-Component Dirac Equation

The plus and minus chirality components are not independent since they must obey

the first order Dirac equation (149). We use the Weyl representation where γ5 is
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Πν(ζ), Π†

ν(ζ)
]

=

(
2ν + 1

ζ2
− 2κ2

)
γ5. (152)

Since the operator αΠ is self-adjointM is real. Each component satisfies the Dirac

wave equation (
HLF −M2

)
ψ(ζ) = 0, (153)

where the effective light-front Hamiltonian HLF = Π†Π is given by

HLF = − d2

dζ2
+

(
ν + 1

2

)2

ζ2
− ν + 1

2

ζ2
γ5 + κ4ζ2 + κ2(2ν + 1) + κ2γ5. (154)

The light-front wave equation (153)

HLF ψ± =M2ψ±, (155)

leads to the uncoupled light-front wave equations(
d2

dζ2
+

1− 4ν2

4ζ2
− κ4ζ2 − 2(ν + 1)κ2 +M2

)
ψ+(ζ) = 0, (156)(

d2

dζ2
+

1− 4(ν + 1)2

4ζ2
− κ4ζ2 − 2νκ2 +M2

)
ψ−(ζ) = 0, (157)

with solutions

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2), (158)

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2), (159)

and eigenvalues

M2 = 4κ2(n + ν + 1), (160)

identical for both plus and minus eigenfunctions.
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Harmonic Oscillator Potential!Uncoupled Schrodinger Equations

Solution

Same eigenvalue!



 

5.2 Normalization

In terms of the upper and lower components of the wavefunction Ψ the normalization

condition ∫
dζψ†(ζ)ψ(ζ) = 1, (169)

is ∫
dζ

[|ψ+(ζ)|2 + |ψ−(ζ)|2] = 1. (170)

Using the holographic harmonic-oscillator light-front wavefunction (173) we find

that the total probability to find a baryon in its plus or minus component P± is

identical

P+ =

∫ ∞

0

dζ|ψ+(ζ)|2 (171)

P− =

∫ ∞

0

dζ|ψ−(ζ)|2. (172)

Our final result:

ψ(ζ) = κ1+ν

√
n!

Γ(n + ν + 1)!
z

1
2+νe−κ2ζ2/2

[
Lν

n

(
κ2ζ2

)
u+ +

κζ√
n + ν + 1

Lν+1
n

(
κ2ζ2

)
u−

]
.

(173)

5.3 Holographic Baryon Spectrum

The solution to (149) for a baryon (twist-dimension 3) including its orbital excitations

is

ψ(ζ) = κ2+L

√
n!

(n + L + 2)!
z

3
2+Le−κ2ζ2/2

[
LL+1

n

(
κ2ζ2

)
u+ +

κζ√
n + L + 2

LL+2
n

(
κ2ζ2

)
u−

]
.

(174)

with eigenvalues

M2 = 4κ2(n + L + 2). (175)

To reproduce the data for mesons one has to redefine the vacuum energy by

shifting the values of M2:

M2 →M2 − 4κ2, (176)
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thus

M2 = 4κ2(n + L + 1). (177)

The shift given by (176) differs from the shift required to reproduce the vector meson

data (100).

The Regge trajectory for the proton is shown in Fig. 6. The linear prediction

from (177) corresponds to κ ! 0.49 GeV.
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Figure 6: J = L + 1/2 Regge trajectory for the proton for a values of κ ! 0.49 GeV.

The HO solution does not seem to lead to parallel trajectories for baryons as

the holographic truncated model. Would a HO R-S equation solve the problem to

describe the J = 3/2 + L trajectories?
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diagonal. Using the 2 × 2 representation of the Dirac matrices given in Section 4.3

we find(
0 − d

dζ
d
dζ 0

)(
ψ+

ψ−

)
−

(
0

ν+ 1
2

ζ + κ2ζ
ν+ 1

2
ζ + κ2ζ 0

)(
ψ+

ψ−

)
=M

(
ψ+

ψ−

)
, (161)

which is equivalent to the system of coupled linear equations

− d

dζ
ψ− − ν + 1

2

ζ
ψ− − κ2ζψ− = Mψ+, (162)

d

dζ
ψ+ − ν + 1

2

ζ
ψ+ − κ2ζψ+ = Mψ−. (163)

Solving for example the linear coupled equation (163) using as input the ψ+ solu-

tion

ψ+(ζ) = Cz
1
2+νe−κ2ζ2/2Lν

n

(
κ2ζ2

)
, (164)

we find

ψ−(ζ) = −C
κζ√

n + ν + 1
z

1
2+νe−κ2ζ2/2Lν+1

n

(
κ2ζ2

)
, (165)

where we have used the relation

Lν+1
n−1(x) + Lν

n(x) = Lν+1
n (x), (166)

between associated Laguerre functions Lν
n.

The solution to (149) can thus be written as

ψ(ζ) = Cz
1
2+νe−κ2ζ2/2

[
Lν

n

(
κ2ζ2

)
u+ +

κζ√
n + ν + 1

Lν+1
n

(
κ2ζ2

)
u−

]
, (167)

with

u+ =
1√
2


1

1

0

0

 , u− =
1√
2


0

0

−1

−1

 . (168)

If we take as starting point the linear coupled equation we find identical results.
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Same slope in L and n

V = −βκ2ζ

M2(GeV2)

K+

p

g

u
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V = −βκ2ζ
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• Fundamental measure of valence wavefunction

• Gauge Invariant (includes Wilson line)

• Evolution Equations, OPE

• Conformal Expansion

• Hadronic Input in Factorization Theorems

Hadron Distribution Amplitudes 

Lepage, SJB

φ(xi, Q) ≡ Πn−1
i=1

∫ Q d2"k⊥ ψn(xi,"k⊥i)

100
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x

0
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1.5

2
φ π(x

)

Linear potential(m=0.22 GeV,β=0.3659 GeV)

HO potential(m=0.25 GeV,β=0.3194 GeV)

φ
as

(x)~x(1-x)

φ
AdS/CFT

(x)~[x(1-x)]
1/2

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :

Oberwölz

Π(Q2) = α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9
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shown in Fig. 1. The corresponding predictions for !R and

!MS using the CSRs at NLO are also shown. Note that for

low Q2 the couplings, although frozen, are large. Thus the

NLO and higher-order terms in the CSRs are large, and in-

verting them perturbatively to NLO does not give accurate

results at low scales. In addition, higher-twist contributions

to !V and !R , which are not reflected in the CSR relating

them, may be expected to be important for low Q2 "35#.
It is clear that exclusive processes such as the pion and

photon to pion transition form factors can provide a valuable

window for determining the magnitude and the shape of the

effective charges at quite low momentum transfers. In par-

ticular, we can check consistency with the !V prediction

from lattice gauge theory. A complimentary method for de-

termining !V at low momentum is to use the angular anisot-

ropy of e!e"→QQ̄ at the heavy quark thresholds "36#. It
should be emphasized that the parametrization $18% is just an
approximate form. The actual behavior of !V(Q

2) at low Q2

is one of the key uncertainties in QCD phenomenology. In

this paper we shall use exclusive observables to deduce in-

formation on this quantity.

IV. APPLICATIONS

As we have emphasized, exclusive processes are sensitive

to the magnitude and shape of the QCD couplings at quite

low momentum transfer: QV
*2!e"3Q2!Q2/20 and

QR
*2!Q2/50 "37#. The fact that the data for exclusive pro-

cesses such as form factors, two photon processes such as

&&→'!'", and photoproduction at fixed (c .m . are consis-
tent with the nominal scaling of the leading-twist QCD pre-

dictions $dimensional counting% at momentum transfers Q up

to the order of a few GeV can be immediately understood if

the effective charges !V and !R are slowly varying at low

momentum. The scaling of the exclusive amplitude then fol-

lows that of the subprocess amplitude TH with effectively

fixed coupling. Note also that the Sudakov effect of the end-

point region is the exponential of a double log series if the

coupling is frozen, and thus is strong.

In Fig. 2, we compare the recent CLEO data "38# for the
photon to pion transition form factor with the prediction

Q2F&'$Q2%#2 f '" 1"
5

3

!V$e"3/2Q %

' # . $19%

The flat scaling of the Q2F&'(Q
2) data from Q2#2 to

Q2#8 GeV2 provides an important confirmation of the ap-

plicability of leading twist QCD to this process. The magni-

tude of Q2F&'(Q
2) is remarkably consistent with the pre-

dicted form assuming the asymptotic distribution amplitude

and including the LO QCD radiative correction with

!V(e
"3/2Q)/'!0.12. Radyushkin "39#, Ong "40# and Kroll

"41# have also noted that the scaling and normalization of the
photon-to-pion transition form factor tends to favor the

asymptotic form for the pion distribution amplitude and rules

out broader distributions such as the two-humped form sug-

gested by QCD sum rules "42#. One cannot obtain a unique
solution for the non-perturbative wave function from the F'&
data alone. However, we have the constraint that

1

3
$ 1

1"x
% &1"

5

3

!V$Q*%

' '!0.8 $20%

"assuming the renormalization scale we have chosen in Eq.
$13% is approximately correct#. Thus one could allow for

some broadening of the distribution amplitude with a corre-

sponding increase in the value of !V at low scales.

In Fig. 3 we compare the existing measurements of the

space-like pion form factor F'(Q
2) "43,44# $obtained from

the extrapolation of &*p→'!n data to the pion pole% with
the QCD prediction $10%, again assuming the asymptotic
form of the pion distribution amplitude. The scaling of the

FIG. 1. The coupling function !V(Q
2) as given in Eq. $18%.

Also shown are the corresponding predictions for !MS̄ and !R fol-

lowing from the NLO commensurate scale relations "Eqs. $2% and
$9%#.

FIG. 2. The &→'0 transition form factor. The solid line is the

full prediction including the QCD correction "Eq. $19%#; the dotted
line is the LO prediction Q2F&'(Q

2)#2 f ' .

FIG. 3. The space-like pion form factor.

57 249OPTIMAL RENORMALIZATION SCALE AND SCHEME . . .

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions
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g
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Increases PQCD leading twist prediction for
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where !M(x ,Q̃) is the process-independent meson distribu-

tion amplitude, which encodes the non-perturbative dynam-

ics of the bound valence Fock state up to the resolution scale

Q̃ , and

TH"x ,y ,Q2#!
16$CF%s"&#

"1"x #"1"y #Q2 '1#O"%s#( "6#

is the leading-twist perturbatively-calculable subprocess am-

plitude )*q(x) q̄ (1"x)→q(y) q̄ (1"y), obtained by re-

placing the incident and final mesons by valence quarks col-

linear up to the resolution scale Q̃ . The contributions from

non-valence Fock states and the correction from neglecting

the transverse momentum in the subprocess amplitude from

the non-perturbative region are higher twist, i.e., power-law

suppressed. The transverse momenta in the perturbative do-

main lead to the evolution of the distribution amplitude and

to NLO corrections in %s . The contribution from the end-

point regions of integration, x*1 and y*1, are power-law
and Sudakov suppressed and thus can only contribute correc-

tions at higher order in 1/Q '4(.
The distribution amplitude !(x ,Q̃) is boost and gauge

invariant and evolves in lnQ̃ through an evolution equation

'4(. It can be computed from the integral over transverse

momenta of the renormalized hadron valence wave function

in the light-cone gauge at fixed light-cone time '4(:

!"x ,Q̃ #!! d2k!!+" Q̃2"
k!!
2

x"1"x #
#,"Q̃ #"x ,k!!#. "7#

The physical pion form factor must be independent of the

separation scale Q̃ . The natural variable in which to make
this separation is the light-cone energy, or equivalently the

invariant mass M2!k!!
2 /x(1"x), of the off-shell partonic

system '20,4(. Any residual dependence on the choice of Q̃
for the distribution amplitude will be compensated by a cor-
responding dependence of the NLO correction in TH . How-
ever, the NLO prediction for the pion form factor depends
strongly on the form of the pion distribution amplitude as
well as the choice of renormalization scale & and scheme.
It is straightforward to obtain the commensurate scale re-

lation between F$ and %V following the procedure outlined
above. The appropriate BLM scale for F$ is determined
from the explicit calculations of the NLO corrections given
by Dittes and Radyushkin '21( and Field et al. '22(. These
may be written in the form 'A(&)n f#B(&)(%s /$ , where A
is independent of the separation scale Q̃ . The n f dependence
allows one to uniquely identify the dependence on -0, which
is then absorbed into the running coupling by a shift to the

BLM scale Q*!e3A(&)& . An important check of self-

consistency is that the resulting value for Q* is independent
of the choice of the starting scale & .
Combining this result with the BLM scale-fixed expres-

sion for %V , and eliminating the intermediate coupling, we

find

F$"Q2#!!
0

1

dx!$"x #!
0

1

dy!$"y #
16$CF%V"QV#

"1"x #"1"y #Q2" 1#CV

%V"QV#

$ #
!"4!

0

1

dx!$"x #!
0

1

dy!$"y #V"QV
2 #" 1#CV

%V"QV#

$ # , "8#

where CV!"1.91 is the same coefficient one would obtain
in a conformally invariant theory with -!0, and

QV
2.(1"x)(1"y)Q2. In this analysis we have assumed

that the pion distribution amplitude has the asymptotic form

!$!!3 f $x(1"x), where the pion decay constant is f $$93
MeV. In this simplified case the distribution amplitude does

not evolve, and there is no dependence on the separation

scale Q̃ . This commensurate scale relation between F$(Q
2)

and /%V(QV)0 represents a general connection between the
form factor of a bound-state system and the irreducible ker-

nel that describes the scattering of its constituents.

Alternatively, we can express the pion form factor in

terms of other effective charges such as the coupling %R(!s)
that defines the QCD radiative corrections to the e#e"→X

cross section: R(s).31eq
2'1#%R(!s)/$( . The CSR be-

tween %V and %R is

%V"QV#!%R"QR#" 1"
25

12

%R

$
#••• # , "9#

where the ratio of commensurate scales to this order is

QR /QV!e23/12"223$0.614.
If we expand the QCD coupling about a fixed point in

NLO '10(: %s(QV)$%s(Q0)'1"„-0%s(Q0)/2$…ln(QV /Q0)(,
then the integral over the effective charge in Eq. "8# can be
performed explicitly. Thus, assuming the asymptotic distri-

bution amplitude, the pion form factor at NLO is

Q2F$"Q2#!16$ f$
2%V"Q*#" 1"1.91

%V"Q*#

$ # , "10#

where Q*!e"3/2Q . In this approximation lnQ*2

!/ln(1"x)(1"y)Q20, in agreement with the explicit calcula-
tion. A striking feature of this result is that the physical scale

controlling the meson form factor in the %V scheme is very

low: e"3/2Q$0.22Q , reflecting the characteristic momentum
transfer experienced by the spectator valence quark in

lepton-meson elastic scattering.

We may also determine the renormalization scale of %V

for more general forms of the coupling by direct integration

over x and y in Eq. "8#, assuming a specific analytic form for
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Lepage, sjb C. Ji, A. Pang, D. Robertson, sjb

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ



 
 Stan Brodsky,  SLAC

AdS/QCDInstitute for Nuclear Theory
April 11, 2007

Lepage & sjb

103

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
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η = πZα
β
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Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

φ
AdS/QCD
π (x) ∝ [x(1− x)]1/2

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Neutral pair  angular distribution
sensitive to AdS/CFT distribution!
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Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.
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M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2
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πA→ JetJetA′

ψπ
qq̄(x,!k⊥)

D. Ashery, Tel Aviv University

THE qq̄ MOMENTUM WAVE FUNCTION

MEASURED BY DI-JETS

Fermilab E791 Collaboration, PRL 86, 4768 (2001)

1.5GeV/c ≤ kt ≤ 2.5GeV/c; Q2 ∼ 16 (GeV/c)2 : φ2 > 0.9φ2
Asy

1.25GeV/c ≤ kt ≤ 1.5GeV/c; Q2 ∼ 8 (GeV/c)2 :

φ2 contains contributions from CZ or other non-perturbative wave functions

x

Diffractive Dissociation of a 
Pion into Dijets

• E789 Fermilab Experiment 
Ashery et al

• 500 GeV pions collide on 
nuclei keeping it intact

• Measure momentum of two 
jets

• Study momentum distributions 
of pion LF wavefunction
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Fluctuation of a Pion to a 
Compact Color Dipole State

Color-Transparent Fock State For High Transverse 
Momentum Di-Jets

Same Fock State 
Determines Weak 

Decay
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Key Ingredients in Ashery Experiment

q

q̄

g

π

q

q̄

g

π

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π

q

q̄

g

π

M ∝ b⊥

q

q̄

g

π

Local gauge-theory interactions 
measure transverse size of color dipole
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Key Ingredients in Ashery Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact

Brodsky Mueller
Frankfurt Miller Strikman

Diffraction, Rapidity gap
A

A’

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q
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Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example

Nuclear coherence Nuclear coherence

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

LIoffe > 4fm ∼ RA
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

Conventional Glauber 
Theory Ruled Out ! 
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Ashery E791: 
Measure of pion LFWF in diffractive dijet production 

Confirmation of color transparency, 
gauge theory of strong interactions 

Mueller, sjb; Bertsch et al; Frankfurt, Miller, Strikman

Factor of 7
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

A. H. Mueller,  sjb
Bertsch, Gunion, Goldhaber, sjb
Frankfurt, Miller, Strikman
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Key Ingredients in Ashery Experiment

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction
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s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2
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M ∝ s

q
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M ∝ ∂2
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ψπ(x, k⊥)

F2
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1
3R2
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M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

Brodsky, Gunion, Frankfurt, Mueller, Strikman
Frankfurt, Miller, Strikman
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Fig. 23. The Acceptance-corrected u distributions of diffractive dijets obtained by applying correction to the E791

results [96]. The distributions are for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for 1.5 ≤ kt ≤ 2.5 GeV/c (right). The

solid line is a fit to a combination of Gegenbauer polynomials, Eq. (49).

were very stable. The fact that a4 "= 0, which seems to be essential for a reasonable fit, indicates

a distribution amplitude that is different from φCZ as defined in Eq. (37) which contains only a
a2 term [32].

3.3.4. Transverse momentum distribution

As discussed in Section 2.3, derivation of the cross section for diffractive dissociation [69]

is based on the double-differentiation of the LCWF with respect to kt (Eq. (26)). More

specifically:

dσ

dk2t
∝ |αs(k2t )xNG(u, k2t )|2

∣∣∣∣ ∂2

∂k2t
ψ(u, kt )

∣∣∣∣2 , (50)

with xN = 2k2t /s and GN the gluon distribution function in the nucleon. This double-

differentiation leads to a prediction of the kt dependence of the cross section. By comparing the

measured and predicted kt distributions it is possible to test to what extent the assumptions used

in deriving the cross section are correct with sensitivity to both the LCWF and the interaction.

When applying Eq. (26) to the pion LCWF given by Eq. (46) the differentiation with respect to

kt does not modify the u-dependence if k
2
t $ µ2. An additional kt dependence comes from the

gluon distribution in the nucleon. With αs(k
2
t )xNG(u, k2t ) ∼ k

1
2
t [97] this yields:

M(N) ∝ xNGN

k4t
,

dσ

dk2t
∝ (xNGN )2

k8t
,

dσ

dkt
∝ k−6

t (51)

and the u-dependence is the same as for φ2(u), Eq. (27). The experimental results are shown in
Fig. 24 where they are compared with several fits. An attempt to fit the data over the whole kt
range to a power-law dependence: dσ

dkt
∝ knt resulted in n = −9.2 ± 0.4(stat) ± 0.3(sys), much

larger than expected from Eq. (51). This result is dominated by the low kt high statistics region.

It can be seen that for the larger kt the slope changes and when only the kt > 1.8 GeV region is

fit to a power-law the result is n = −6.5 ± 2.0, consistent with the predictions, Fig. 24(a, b).
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Fig. 25. Diagram of diffractive dissociation of a pion to two jets used for the calculations by Chernyak [103] and by

Braun et al. [102,106].

3.3.5. Has E791 measured the pion distribution amplitude?

Following publication of the E791 results [96] several theoretical papers were published

discussing the question of whether they can indeed be taken as measurement of the pion

distribution amplitude. The subject was also discussed in several conferences [104]. We bring

here a brief summary of the main points that were raised and add some comments. The main

questions that were discussed are:

• Is the cross section for the process indeed proportional to φ(u)2 as claimed in Eq. (27) [69]?
• Are the results precise enough to distinguish between φAsy(u) and other forms of φ(u)?

Nikolaev et al. [74] calculate the cross section for diffractive dissociation of pions to dijets

using pQCD methods. They show that the cross section is proportional to φ2(u) and to the

unintegrated gluon structure function of the nucleon. They disagree with Frankfurt et al. [69] who

used the integrated gluon structure function. They calculate higher-twist effects which contain

some u-dependence but show that in nuclear medium they are suppressed. As a result, when the

measurements are done in a heavy nuclear target the cross section is proportional to φ(u)2 and
can be used to determine it. Hence their response to the first question is positive. Concerning the

shape of φ(u) they propose a soft model distribution amplitude that has a different mathematical

form than that of φAsy(u) but has a very similar u-dependence. Because of this similarity they
conclude that the E791 results are consistent with their calculations as well. They are also able

to reproduce the kt and A dependence observed in the experiment.

V. Chernyak [103–105] calculates the process described in Fig. 25. The lower blob in the

diagram represents the skewed gluon distribution of the nucleon. The upper blob represents the

hard kernel of the amplitude that consists of 31 connected Born diagrams. Nuclear effects and

the quark transverse momenta are ignored. Calculations of these diagrams lead to an expression

for the amplitude which is not proportional to φ(u) but rather to a sum of four integrals over

φ(u) multiplied by expressions that contain u-dependence. His conclusion is that the cross
section depends on φ2(u) in a complicated way hence measurement of the cross section cannot

provide a measurement of φ2(u). Chernyak disagrees with the authors of [74] as they ignore

the contributions where the jet momenta differ significantly from the quark momenta. He agrees

that making this assumption will lead to proportionality of the cross section and φ2(u). He also

disagrees with the authors of [69] that ignored contributions from diagrams that are, according

to their evaluation of the E791 conditions, suppressed by Sudakov form factors. Following these

arguments Chernyak applies his calculations to φAsy(u) and to φCZ(u) which he evolves to the

scale of 2 GeV. He does it by treating the pion as free qq̄ and does not use the logarithmic

gluons 
measure 
size of 
color 
dipole

x

x

1-x
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D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI-JETS YIELD

dσ

dk2
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∣∣∣∣αs(k

2
t )G(x, k2

t )
∣∣∣∣2

∣∣∣∣∣∣∣
∂2

∂k2
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∣∣∣∣∣∣∣
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High Transverse 
momentum  
dependence 

consistent with 
PQCD, ERBL 
Evolution
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)

x
Narrowing of x distribution at higher jet transverse momentum 
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Possibly two components:  
Nonperturbative and Perturbative 

(ERBL) Evolution
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Prediction from AdS/CFT: Meson LFWF
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       Harmonic 
Oscillator model

(GeV)
de Teramond, sjb
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
dσ
dt = |M(s,t)|2
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MIT Bag Model (de Tar), large  NC,  (‘t Hooft), AdS/CFT
 all predict dominance of quark interchange:
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)
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dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

Quark Interchange
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect



 Stan Brodsky,  SLAC
AdS/QCDInstitute for Nuclear Theory

April 11, 2007

Some Applications of Light-
Front Wavefunctions

• Exact formulae for form factors, quark and gluon distributions; 
vanishing anomalous gravitational moment; edm connection to anm

• Deeply Virtual Compton Scattering, generalized parton distributions, 
angular momentum sum rules

• Exclusive weak decay amplitudes

• Single spin asymmetries: Role if ISI and FSI

• Factorization theorems, DGLAP, BFKL, ERBL Evolution

• Quark interchange amplitude

• Relation of spin, momentum, and other distributions to  physics of 
the hadron itself.
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Annihilation amplitude needed for Lorentz Invariance

n = n’ + 2

Exact Formula 
Hwang, SJB
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

N=3 VALENCE QUARK ⇒ Light-cone Constituent quark model

N=5 VALENCE QUARK + QUARK SEA ⇒ Meson-Cloud model

Diehl, Hwang, sjb,  NPB596, 2001

Pasquini
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The Generalized Parton Distribution E(x , ζ, t)

The generalized form factors in virtual Compton scattering
γ∗(q) + p(P)→ γ∗(q′) + p(P ′) with t = ∆2 and
∆ = P − P ′ = (ζP+,∆⊥, (t + ∆2

⊥)/ζP+), have been constructed in the
light-front formalism. [Brodsky, Diehl, Hwang, 2001]

We find, under q⊥ → ∆⊥, for ζ ≤ x ≤ 1,

E(x , ζ, 0)

2M
=

∑
a

(
√

1− ζ)1−n
∑

j

δ(x − xj)

∫
[dx ][d2k⊥]

×ψ∗
a(x ′i , k⊥i ,λi)S⊥ · Lqj

⊥ψa(xi , k⊥i ,λi) ,

with x ′j = (xj − ζ)/(1− ζ) for the struck parton j and x ′i = xi/(1− ζ) for the
spectator parton i .
The E distribution function is related to a S⊥ · Lqj

⊥ matrix element at finite ζ as
well.

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 9
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N

N

γ
*

γ
*

x0
x3

FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(
1
2
mxBx

−)
(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡ qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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(a) (b)

FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ
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Space-time picture of  DVCSIncreases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9
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Measure x- distribution from DVCS: 
Use Fourier transform of skewness, 

the longitudinal momentum transfer 
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3-dimensional photograph:
meson LFWF at fixed LF Time

G. de Teramond
SJB 

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz
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∆ = 3 + L: conformal dimension of meson
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σ = ct− z

z0 = 1
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z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z
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Features of Light-Front Formalism

• Hidden Color Of Nuclear Wavefunction

• Color Transparency, Opaqueness

• Intrinsic glue, sea quarks, intrinsic char&

• Simple proof of Factorization theorems for hard processes 
(Lepage, sjb)

• Direct mapping to AdS/CFT (de Teramond, sjb)

• New Effective LF Equations (de Teramond, sjb)

• Light-Front Amplitude Generator
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Goal: First Approximant to QCD
QCD at the Amplitude Level

Holography
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation
Light-Front QCD

Pauli, Pinsky, sjb

DLCQ

Use AdS/QCD  basis functions
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations
Vary, Harinandrath, sjb
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• New initial approximation to QCD based on conformal 
invariance, and confinement

• Underlying principle:  Conformal Template

• AdS5: Mathematical representation of conformal gauge 
theory

• Systematically improve using DLCQ

• Successes: Hadron spectra, LFWFs, dynamics

• QCD at the Amplitude Level

AdS/QCD
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Outlook

• Only one scaleΛQCD determines hadronic spectrum (slightly different for mesons and baryons).

• Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.

• String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS

boundary.

• Only dimension 3, 9
2 and 4 states qq, qqq, and gg appear in the duality at the classical level!

• Non-zero orbital angular momentum and higher Fock-states require introduction of quantum

fluctuations.

• Simple description of space and time-like structure of hadronic form factors.

• Dominance of quark-interchange in hard exclusive processes emerges naturally from the

classical duality of the holographic model. Modified by gluonic quantum fluctuations.

• Covariant version of the bag model with confinement and conformal symmetry.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 29136
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AdS/QCD G. F. de Téramond

AdS/CFT and QCD

Bottom-Up Approach

• Nonperturbative derivation of dimensional counting rules of hard exclusive glueball scattering

for gauge theories with mass gap dual to string theories in warped space:

Polchinski and Strassler, hep-th/0109174.

• Deep inelastic structure functions at small x:

Polchinski and Strassler, hep-th/0209211.

• Derivation of power falloff of hadronic light-front Fock wave functions, including orbital angular

momentum, matching short distance behavior with string modes at AdS boundary:

Brodsky and de Téramond, hep-th/0310227.

• Low lying hadron spectra, chiral symmetry breaking and hadron couplings in AdS/QCD:

Boschi-Filho and Braga, hep-th/0212207; de Téramond and Brodsky, hep-th/0501022; Erlich, Katz,

Son and Stephanov, hep-ph/0501128; Hong, Yong and Strassler, hep-th/0501197; Da Rold and Po-

marol, hep-ph/0501218; Hirn and Sanz, hep-ph/0507049; Boschi-Filho, Braga and Carrion, arXiv:hep-

th/0507063; Katz, Lewandowski and Schwartz, arXiv:hep-ph/0510388.

Caltech High Energy Seminar, Feb 6, 2006 Page 6

E. van Beveren et al.
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AdS/QCD G. F. de Téramond

• Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez,

hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower,

Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

• D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos,

Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erd-

menger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201;

Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnen-

schein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera,

hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219;

Casero, Paredes and Sonnenschein, hep-th/0510110.

• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma (η/s = 1/4π):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 . . .

Caltech High Energy Seminar, Feb 6, 2006 Page 7
138



 
 Stan Brodsky,  SLAC

AdS/QCDInstitute for Nuclear Theory
April 11, 2007

1994-10-15

Another Search

 

Home I Today's Cartoon I More Comics I eCards I Shop I Reprints I Fun I Animation I Search I FAQ I Privacy  I Contact

All "Frank and Ernest" characters, panels and images copyright © 1972 - 2004 by Thaves. All Rights Reserved. Frank and Ernest is a trademark of  Thaves. This site
is maintained by The Comics, Inc. It is Copyright © 1997 - 2004 by The Comics, Inc. All material submitted to this site becomes the property of  The Comics. The
name "The Comics," the logo and other trademarks are the exclusive property of  their respective holders who reserve all rights. All materials contained in this site
are protected by copyright, trademark or other laws and shall not be used for any other purpose whatsoever other than non-commercial, private viewing purposes
unless otherwise expressly provided herein. Derivative works and other unauthorized copying or use of  stills, audio, and video footage, including the re-transmission

of  downloaded programs, graphics, and other materials are expressly prohibited.

I thought I had 
discovered the 

Theory of Everything 
But everything 
canceled out !

A Theory of Everything Takes Place

SCIENCE  VOL  265 15 SEPTEMBER 1995

String theorists have broken an impasse and may be 
on their way to converting this mathematical 

structure -- physicists’ best hope for unifying gravity 
and quantum theory -- into a single coherent theory.
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