Hadronic weak interaction

David Bowman**ORNL** Institute for Nuclear Theory June 5, 2007

Essential references

- [DDH]-Desplanques, Donoguhe, and Holstein, *Ann*. *Phys*. 124:449(1980)
- Adelberger and Haxton, *Ann. Rev. Nucl. Part. Sci.* 1985. 35:501
- Desplanques, Physics Reports 297(1988)1

DDH Theory

• Two-body Meson-exchange potential

$$
V = \sum_{k=\pi,\rho,\omega} \sum_{\Delta l} h_{k,\Delta l} \, Y(m_k \, r) \, Q_k(p,r,\sigma,\tau)
$$

- 6 free parameters *f* f_{π} *, h_{ρ,0}, h_{ρ,1},h_{ρ,2}, h_{ω,0}, and h_{ω,1}*
- DDH give reasonable ranges. reduce 6 to 4,

 f_{π} *,* $h_{\rho,0}$ *,* $h_{\rho,2}$ *,* $h_{\omega,0}$

• Nuclear PV is determined by one-body potentials

$$
X_N^{p \text{ or } n} = \pm 5.5 f_\pi - 1.13 h_{\rho,0} - 0.91 h_{\omega,0}
$$

• The expressions for observables depend on the N-N PC potential used. (AV18 consistently used here.)

DDH ranges and best values

DDH limits and best

fл	0 .	4.6	11.4
$f \circ 0$	-30.8	-11.4	11.4
$f \rho 1$	-0.38	-0.19	0.
$f \circ 2$	$-11.$	-9.5	7.6
${\tt f} \omega$ 0	-10.3	-1.9	5.7
$f \omega 1$	-1.9	-1 . 1	-0.8

10 existing precise experiments and 4 constrained quantities

- p-p scattering at 15, 45 MeV – linear combination of $h_{\rho,0}$ + $h_{\rho,2}/\sqrt{6}$ and $h_{\rho,2}/\sqrt{6}$ and $h_{\omega,0}$
- p-p scattering at 220 MeV

$$
-h_{\rho,0}+h_{\rho,2}/\sqrt{6}
$$

• 18F

$$
\ - \quad f_{\pi}
$$

• p- α , ¹⁹F, ⁴¹K, ¹⁷⁵Lu, ¹⁸¹Ta asymmetries and 133Cs anapole moment

$$
- X_N^p
$$

p-p consistency check

• p-p at 15 and 45 MeV measure S-P interference and depend on the same linear combination of couplings

$$
= f_{\rho,0} + f_{\rho,1} + f_{\rho,2}/\sqrt{6} + .92(f_{\omega,0} + f_{\omega,1})
$$

• predicted ratio is .56 and measured ratio is .59 ±.27

One-body PV potential

• If the model-space of a nucleus consists of proton (or neutron) excitations then we are interested in matrix elements between these states, $\langle \psi_2 | V_{PNC} | \psi_1 \rangle$. Although V_{PNC} can change the state of two nucleons, the amplitudes where only 1 nucleon changes state add coherently and dominate the matrix element for large A.

Discussion of ¹⁸F (¹⁹F)

$$
P_{\gamma} = \frac{2}{39 \text{ keV}} \left(\frac{\tau_{-} E_{-}^{3}}{\tau_{+} E_{+}^{3}} \right)^{1/2} h_{\pi} \langle + |V_{\pi}| - \rangle
$$

 $P_\gamma \;$ measured. $\langle +|V_\pi|-\rangle$ is needed. 18 Ne G. S. is the IAS of 0⁺ I=1. β decay amplitude = a ${\sf V}_{\pi}(\tau_{\text{\sf z}} \rightarrow \tau_{\pm})+$ $b\,\sigma\!\cdot\!\rho\,\tau_+$

a and b from CVC and PCAC. The ratioof the matrix elements of the 1- body and 2 - body matrix elements is independent of the details of the wave function. The measured lifetime determines $\langle + |$ V $_{\pi}$ − *.*

 18_F

Discussion of ²¹Ne

- PV circular polarization of the 2789 keV γ in the odd-neutron nucleus 21Ne is consistent with 0.
- One would expect a large asymmetry based on ¹⁸F=0 and X_{Np}≠0.
- Both neutron and proton states are active in 21Ne. PV asymmetries involve a theoretically unstable combination of X_{Np} and X_{Nn} . The combination depends on the residual interaction chosen. (A. Brown)
- Although some calculations have 21 Ne \sim X_{Np} , + X_{Np} , ²¹Ne can't be used to constrain the

• The repulsive short-range nucleonnucleon potential reduces the contributions of the ρ and ω mesons. Deplanques has evaluated the linear combinations of couplings, X's, that enter in PV in heavy nuclei using nuclear-matter theory for different nucleon-nucleon forces.

X_{Np} (for X_{Nn} change sign of $\Delta I=1$)

Consistency of 6 odd-proton nuclei

- p- α , ¹⁹F, ⁴¹K, ¹⁷⁵Lu, ¹⁸¹Ta, and ¹³³Cs are all odd-proton nuclei. All are therefore $\sim X_{N,p}$.
	- Expt. X_{Np}
	- *p* − α 6.1 ±1.7
	- 19 F $-$ 7.8 \pm 2.0 (coeffecient of $f_{_{\pi}}$ from experiment)
	- 41 K 7.8 \pm 1.6
	- 133 Cs 13.2 \pm 2.3
	- 175 Lu 5. $9\pm .5$
	- 181 Ta 6.3 $\pm .6$
	- Ave. χ 2/DoF Pran
	- All 6 6.4 ±.4 11.0/5 .05
	- X^{133} Cs 6.2 + .4 2.1/4 .73

6 parameters and 4 constraints

- We need more independent experiments and/or additional theoretical information
- More theoretical information
	- Take DDH reasonable ranges at face value
	- $f_{\rho,1}$ and $f_{\omega,1}$ enter the expressions for observables with very small coefficients
- Fix $f_{\rho, \varLambda}$ and $f_{\omega, \varLambda}$ at DDH best values and add the DDH reasonable rang in quadrature to the experimental errors. Now 4 parameters and 4 constraints

Results of 4 parameter fit to 10 measurements

fitted parameters and DDH range value par DDH. error -0.456387 | (0.91383) | $(0.4611.4)$ fл -43.3029 $|8.75909$ $|-30.8$ -11.4 11.4 $f \circ 0$ 37.0889 | 12.8566 | $-11. -9.5$ 7.6 $f \rho 2$ 丿**\9.38951 丿 │** $-10.3 -1.9 5.7$ $f(0)$ 13.698

 χ 2/DOF= 7.48286/7

probability of random occurence= 0.380391 The AV18 potential was used.

10 Experiments consistently described by three couplings

3 parameter fit, *^h*^ω*,*⁰ ⁼ 0, χ2 */* DOF = 9*.*6 */* 8

Conclusions

- The fit is consistent with the data
- \bullet $\:_{\pi}$ is small (we already knew that from $^{18}{\sf F})$
- \bullet $f_{\rho,0}$ is large (at the limit of the DDH range)
- \bullet *^f*^ω*,⁰* [≠]0 is not necessary to describe data
- \bullet $f_{\rho,2}$ may be large (2.2 σ outside the DDH range)
- Although Δ I=1 is Cabibbo allowed and Δ I=0 and 2 are Cabibbo suppressed, the fits show the opposite pattern
- It is desirable to determine more linear combinations of couplings

Future work

- Measure anapole moments in closed shell odd proton and odd neutron
	- Check theory of anapole moments $133Cs$ is a very complex nucleus
	- Check the one-body approximation. ²⁰⁹Bi~ X_{Np} and ²⁰⁷Pb~ X_{Np}
- \bullet Measure γ circular polarization in n+p \rightarrow d+ γ
	- Constrains *f*ρ*,2*
- Measure PV observables in neutron reactions
	- Asymmetry in n+p→d+ γ, constrains *f_π.*
	- 2-body and few-body asymmetries
	- Use few-body methods to evaluate the asymmetries. Absolutely necessary to plan and interpret experiments!

Critique of DDH

- The possible spin-isospin structure of the PV interactions is fixed (Herczeg)
- DDH theory is a model. Assumes a particular momentum dependence for the interactions
- No demonstration that the model is complete or that the terms correspond to the physical light mesons
- 2- π exchange neglected
- Interpretation of many-body systems involves nuclear models (except for ¹⁸F and ¹⁹F)

EFT

- In principle couplings can be calculated using QCD
- A theory based on systematic expansion in low-energy constants. Early version had 10-12 constants
- C. P. Liu theory has f_{π} and 5 LEC's corresponding to S-P scattering amplitudes (Danilov parameters).
- Theory applies for energies $<$ 40 MeV (can't us p-p 220 MeV)
- Liu has calculated all two-body PV observables
- Greens' function Monte Carlo method can reliably calculate PV matrix elements for few-body systems. Calculations are essential to plan and interpret experiments

Feasible two-body experiments

- $p-p$ s_p \mathbf{k}_p done
- n+p→d+γ s_n•k phase 1 at LANL done
	- phase 2 proposed at SNS
- $n+p \rightarrow d+\gamma \gamma$ CP FEL or intense n source + improved CP polartimiter
- $n+p$ s_n rot. next-generation

Feasible few-body experiments

- \bullet p+ α
- \bullet n+ $\alpha{\rightarrow}$ n+ α
- n+d \rightarrow t+ γ
- n+d
- n+³He
- n+³He

• n+d

 s_p • k_p done s_n rot. preparing NIST s_n • k_{γ} consideration at
SNS γ CP see 2-body $s_n \cdot k_n$ consideration at SNS s_{3} • k_{n} next-generation s_n rot. preliminary expts. done

EFT

- Work out and publish spin-isospin content of EFT
	- Which couplings determine $\Delta I=0$, 1, and 2
- Work out one-body approximation for EFT in order to include nuclear PV constraints
	- Expect that $\Delta l=2$ is absent for nuclei
	- Expect that X's depend on nuclear force
		- Isospin and density dependence?
- Work out few-body observables in order to plan and interpret experiments
- EFT provides a rigorous framework for understanding HWI
	- 6 parameters
	- Valid for E Less that 40 MeV
- Two-body calculations done
- Need few-body calculations to design and interpret experiments
- Need existing and proposed 2 and few-body experiments to constrain f_{π} and 5 LEC's
- couplings reveal short-range structure of q-q correlations

Conclusions

- Experiments require small f_{π} and large *h_{ρ,0}* and *h_{ρ,2}*. $\varDelta I$ =1 is Cabbibo allowed and *∆I*=0 and 2 are suppressed!
- The small Δ I=1 is solid. More assumptions are required for Δ*I*=0 and 2. Δ*I*=0 is large and Δ*I*=2 may be large.
- W and Z exchange are short-range. Above pattern is telling us something about the short-range behavior of q-q correlations in the non-perturbative regime.