Hadronic weak interaction

David Bowman ORNL Institute for Nuclear Theory June 5, 2007

Essential references

- [DDH]-Desplanques, Donoguhe, and Holstein, *Ann. Phys.* 124:449(1980)
- Adelberger and Haxton, Ann. Rev. Nucl. Part. Sci. 1985. 35:501
- Desplanques, Physics Reports 297(1988)1

DDH Theory

• Two-body Meson-exchange potential

$$V = \sum_{k=\pi,\rho,\omega} \sum_{\Delta l} h_{k,\Delta l} Y(m_k r) Q_k(p,r,\sigma,\tau)$$

- 6 free parameters f_{π} , $h_{\rho,0}$, $h_{\rho,1}$, $h_{\rho,2}$, $h_{\omega,0}$, and $h_{\omega,1}$
- DDH give reasonable ranges. reduce 6 to 4,

 f_{π} , $h_{
ho,0}$, $h_{
ho,2}$, $h_{\omega,0}$

Nuclear PV is determined by one-body potentials

$$X_N^{p \text{ or } n} = \pm 5.5 f_{\pi} - 1.13 h_{\rho,0} - 0.91 h_{\omega,0}$$

• The expressions for observables depend on the N-N PC potential used. (AV18 consistently used here.)

DDH ranges and best values

DDH limits and best

(f π)	0.	4.6	11.4
f ₀ 0	-30.8	-11.4	11.4
f $ ho$ 1	-0.38	-0.19	0.
f ₀ 2	-11.	-9.5	7.6
fωO	-10.3	-1.9	5.7
$f\omega 1$	-1.9	-1.1	-0.8

10 existing precise experiments and 4 constrained quantities

- p-p scattering at 15, 45 MeV – linear combination of $h_{\rho,0} + h_{\rho,2}/\sqrt{6}$ and $h_{\omega,0}$
- p-p scattering at 220 MeV

$$- h_{\rho,0} + h_{\rho,2} / \sqrt{6}$$

• ¹⁸F

$$- f_{\pi}$$

 p-α, ¹⁹F, ⁴¹K, ¹⁷⁵Lu, ¹⁸¹Ta asymmetries and ¹³³Cs anapole moment

$$- X_N^p$$

p-p consistency check

 p-p at 15 and 45 MeV measure S-P interference and depend on the same linear combination of couplings

$$- f_{\rho,0} + f_{\rho,1} + f_{\rho,2} / \sqrt{6} + .92 (f_{\omega,0} + f_{\omega,1})$$

 predicted ratio is .56 and measured ratio is .59±.27

One-body PV potential

• If the model-space of a nucleus consists of proton (or neutron) excitations then we are interested in matrix elements between these states, $\langle \psi_2 | V_{PNC} | \psi_1 \rangle$. Although V_{PNC} can change the state of two nucleons, the amplitudes where only 1 nucleon changes state add coherently and dominate the matrix element for large A.

Discussion of ¹⁸F (¹⁹F)

$$P_{\gamma} = \frac{2}{39 \text{ keV}} \left(\frac{\tau_- E_-^3}{\tau_+ E_+^3} \right)^{1/2} h_{\pi} \langle + |V_{\pi}| - \rangle$$

 P_{γ} measured. $\langle +|V_{\pi}|-\rangle$ is needed. ¹⁸Ne G. S. is the IAS of 0⁺ I = 1. β decay amplitude = $aV_{\pi}(\tau_z \rightarrow \tau_{\pm})+$ $b \sigma \cdot p \tau$

 $0^{+} = 1$

 $b \, \sigma \cdot p \, \tau_{\pm}$

a and b from CVC and PCAC. The ratio

of the matrix elements of the 1-body

and 2 - body matrix elements is

independent of the details of the wave

function. The measured lifetime

determines $\langle +|V_{\pi}|-\rangle$.

Discussion of ²¹Ne

- PV circular polarization of the 2789 keV γ in the odd-neutron nucleus ²¹Ne is consistent with 0.
- One would expect a large asymmetry based on $^{18}F{=}0$ and $X_{Np}{\neq}0.$
- Both neutron and proton states are active in ²¹Ne. PV asymmetries involve a theoretically unstable combination of X_{Np} and X_{Nn}. The combination depends on the residual interaction chosen. (A. Brown)
- Although some calculations have ²¹Ne~ X_{Np},+X_{Nn}, ²¹Ne can't be used to constrain the HWI.

 The repulsive short-range nucleonnucleon potential reduces the contributions of the ρ and ω mesons. Deplanques has evaluated the linear combinations of couplings, X's, that enter in PV in heavy nuclei using nuclear-matter theory for different nucleon-nucleon forces.

X_{Np} (for X_{Nn} change sign of $\Delta I=1$)

Force	f_{π}	$f_{ ho,0}$	$f_{ ho,1}$	$f_{ ho,2}$	f _{,0}	f _{,1}
AV18	5.5	-1.13	48	0	91	77
RSC	5.5	89	45	0	75	67
T-S	5.5	-1.98	81	0	-1.51	-1.26
Haxton	5.5	-1.91	58	0	-1.12	99

Consistency of 6 odd-proton nuclei

- p-α, ¹⁹F, ⁴¹K, ¹⁷⁵Lu, ¹⁸¹Ta, and ¹³³Cs are all odd-proton nuclei. All are therefore ~ X_{N.p}.
 - Expt. X_{Np}
 - $p \alpha$ 6.1±1.7
 - ¹⁹F 7.8±2.0 (coeffecient of f_{π} from experiment)
 - 41 K 7.8±1.6
 - ^{133}Cs 13.2±2.3
 - ¹⁷⁵Lu 5.9±.5
 - ¹⁸¹Ta 6.3±.6
 - Ave. χ^2/DoF Pran
 - All 6 6.4±.4 11.0/5 .05
 - X^{133} Cs 6.2±.4 2.1/4 .73

6 parameters and 4 constraints

- We need more independent experiments and/or additional theoretical information
- More theoretical information
 - Take DDH reasonable ranges at face value
 - $f_{\rho,1}$ and $f_{\omega,1}$ enter the expressions for observables with very small coefficients
- Fix $f_{\rho,1}$ and $f_{\omega,1}$ at DDH best values and add the DDH reasonable rang in quadrature to the experimental errors. Now 4 parameters and 4 constraints

Results of 4 parameter fit to 10 measurements

fitted	parameters	and DI	H range		
par	value	erro	r	DDH	
(f <i>π</i>)	-0.456387	0.913	83) (0.	4.6	11.4
fp0	-43.3029	8.759	09 - 30	.8 -11.4	11.4
fp2	37.0889	12.85	666 -11	9.5	7.6
$(f\omega 0)$	13.698	9.389	51/(-10	.3 -1.9	5.7

 $\chi 2 / DOF = 7.48286 / 7$

.

probability of random occurence= 0.380391 The AV18 potential was used.

10 Experiments consistently described by three couplings

Coupling	Valua	DDH	
Coupling	value	Range	
f_{π}	5±.9	0 → 11.4	
$h_{ ho,0}$	-33±5	-31 → 11	
$h_{ ho,2}$	41±13	- 11 → 8	

3 parameter fit, $h_{\omega,0} = 0$, $\chi 2 / DOF = 9.6 / 8$

Conclusions

- The fit is consistent with the data
- f_{π} is small (we already knew that from ¹⁸F)
- $f_{\rho,0}$ is large (at the limit of the DDH range)
- $f_{\omega,0} \neq 0$ is not necessary to describe data
- $f_{\rho,2}$ may be large (2.2 σ outside the DDH range)
- Although ∆I=1 is Cabibbo allowed and ∆I=0 and 2 are Cabibbo suppressed, the fits show the opposite pattern
- It is desirable to determine more linear combinations of couplings

Future work

- Measure anapole moments in closed shell odd proton and odd neutron
 - Check theory of anapole moments ¹³³Cs is a very complex nucleus
 - Check the one-body approximation. $^{209}Bi \sim X_{Np}$ and $^{207}Pb \sim X_{Nn}$
- Measure γ circular polarization in n+p \rightarrow d+ γ
 - Constrains $f_{\rho,2}$
- Measure PV observables in neutron reactions
 - Asymmetry in n+p \rightarrow d+ γ , constrains f_{π} .
 - 2-body and few-body asymmetries
 - Use few-body methods to evaluate the asymmetries.
 Absolutely necessary to plan and interpret experiments!

Critique of DDH

- The possible spin-isospin structure of the PV interactions is fixed (Herczeg)
- DDH theory is a model. Assumes a particular momentum dependence for the interactions
- No demonstration that the model is complete or that the terms correspond to the physical light mesons
- $2-\pi$ exchange neglected
- Interpretation of many-body systems involves nuclear models (except for ¹⁸F and ¹⁹F)

EFT

- In principle couplings can be calculated using QCD
- A theory based on systematic expansion in low-energy constants. Early version had 10-12 constants
- C. P. Liu theory has f_{π} and 5 LEC's corresponding to S-P scattering amplitudes (Danilov parameters).
- Theory applies for energies < 40 MeV (can't us p-p 220 MeV)
- Liu has calculated all two-body PV observables
- Greens' function Monte Carlo method can reliably calculate PV matrix elements for few-body systems. Calculations are essential to plan and interpret experiments

Feasible two-body experiments

- p-p s_p•k_p done
- $n+p \rightarrow d+\gamma s_n \bullet k_\gamma$ phase 1 at LANL done
 - phase 2 proposed at SNS
- $n+p \rightarrow d+\gamma \gamma CP$ FEL or intense n source + improved CP polartimiter
- n+p s_n rot. next-generation

Feasible few-body experiments

- p+α
- $n+\alpha \rightarrow n+\alpha$
- $n+d \rightarrow t+\gamma$
- $n+d \rightarrow t+\gamma$
- n+³He→p+t
- n+³He→p+t

• n+d

done S_D•k_D s_n rot. preparing NIST consideration at s_n•k_v **SNS** γ CP see 2-body $s_n \cdot k_n$ consideration at **SNS** next-generation $S_3 \bullet k_n$ s_n rot. preliminary expts. done

EFT

- Work out and publish spin-isospin content of EFT
 - Which couplings determine $\Delta I=0$, 1, and 2
- Work out one-body approximation for EFT in order to include nuclear PV constraints
 - Expect that $\Delta I=2$ is absent for nuclei
 - Expect that X's depend on nuclear force
 - Isospin and density dependence?
- Work out few-body observables in order to plan and interpret experiments

- EFT provides a rigorous framework for understanding HWI
 - 6 parameters
 - Valid for E Less that 40 MeV
- Two-body calculations done
- Need few-body calculations to design and interpret experiments
- Need existing and proposed 2 and few-body experiments to constrain f_{π} and 5 LEC's
- couplings reveal short-range structure of q-q correlations

Conclusions

- Experiments require small f_{π} and large $h_{\rho,0}$ and $h_{\rho,2}$. $\Delta I=1$ is Cabbibo allowed and $\Delta I=0$ and 2 are suppressed!
- The small ∆I=1 is solid. More assumptions are required for ∠I=0 and 2. ∠I=0 is large and ∠I=2 may be large.
- W and Z exchange are short-range. Above pattern is telling us something about the short-range behavior of q-q correlations in the non-perturbative regime.