

Search for Time Reversal Violating Effects in the Neutron Decay

A Measurement of the Transverse Polarization of Electrons from the Decay of Polarized Neutrons

- G. Ban^d, A. Bialek^c, <u>K. Bodeka,</u> A. Czarnecki^{g*}, P. Gorel^{db}, K. Kirch^b, St. Kistryn^a, A. Kozela^c, M. Kuzniak^{ab}, O. Naviliat–Cuncic^d, J. Pabisz^a, N. Severijns^e, E. Stephan^f, J. Zejma^a
	- a) Institute of Physics, Jagiellonian University, Cracow, Poland
	- b) Paul Scherrer Institute, Villigen, Switzerland
	- c) Institute of Nuclear Physics, Cracow, Poland
	- d) Laboratoire de Physique Corpusculaire, Caen, France
	- e) Catholic University, Leuven, Belgium
	- f) Institute of Physics, University of Silesia, Katowice, Poland
	- g) University of Alberta, Edmonton, Canada
	- *) Theory support

T-odd correlations in β -decay

 \Box Angular distribution contains in the lowest order 4 T-odd observables:

$$
\omega(\langle \mathbf{J}_{n} \rangle E_{\rm e}Q_{\rm e}Q_{\rm e}) \cdot dE_{\rm e}dQ_{\rm e}dQ_{\rm e} \propto \left[1 + ... + D\frac{(\mathbf{p}_{\rm e} \times \mathbf{p}_{\rm v}) \cdot \langle \mathbf{J}_{n} \rangle}{E_{\rm e}E_{\rm e}} + ... \right] \cdot dE_{\rm e}dQ_{\rm e}dQ_{\rm e}
$$
\n
$$
\omega(\langle \mathbf{J}_{n} \rangle \sigma | E_{\rm e}Q_{\rm e}) \cdot dE_{\rm e}dQ_{\rm e} \propto \left[1 + ... + R\frac{(\mathbf{p}_{\rm e} \times \sigma) \cdot \langle \mathbf{J}_{n} \rangle}{E_{\rm e}} + ... \right] \cdot dE_{\rm e}dQ_{\rm e}
$$
\n
$$
\omega(\sigma | E_{\rm e}Q_{\rm e}Q_{\rm e}) \cdot dE_{\rm e}dQ_{\rm e}dQ_{\rm e} \propto \left[1 + ... + L\frac{\sigma \cdot (\mathbf{p}_{\rm e} \times \mathbf{p}_{\rm v})}{E_{\rm e}E_{\rm v}} + ... \right] \cdot dE_{\rm e}dQ_{\rm e}dQ_{\rm e}
$$
\n
$$
\omega(\langle \mathbf{J}_{n} \rangle \sigma | E_{\rm e}Q_{\rm e}) \cdot dE_{\rm e}dQ_{\rm e} \propto \left[1 + ... + V\frac{(\mathbf{p}_{\rm v} \times \sigma) \cdot \langle \mathbf{J}_{n} \rangle}{E_{\rm e}} + ... \right] \cdot dE_{\rm e}dQ_{\rm e}
$$
\n
$$
D, L: \text{ T-odd, P-even} \quad R, V: \text{ T-odd, P-odd}
$$
\n
$$
\text{T-invariance holds} \Rightarrow D, R, V, L = 0 \text{ /}
$$
\n23-Mar-2007\nK. Bodek. INT Workshop on EDMs and CP-Violation. Seattle, 2007

T-odd correlations in β -decay

❏ *D* and *R* are sensitive to distinct aspects of T-violation:

$$
D \cdot \xi = M_F M_{GT} \sqrt{\frac{I}{I+1}} 2 \operatorname{Im} (C_S C_T^* C_V C) + C_S C_T^* C_V C) + D_{\text{FSI}}
$$

\n
$$
R \cdot \xi = |M_{GT}|^2 \frac{1}{I+1} 2 \operatorname{Im} (C_T C) C_V C_T^*
$$

\n
$$
+ M_F M_{GT} \sqrt{\frac{I}{I+1}} 2 \operatorname{Im} (C_S C) C_V C_V^* C_V C_T^*
$$

\n
$$
\xi = |M_F|^2 (|C_S|^2 + |C_V|^2 + |C_S|^2 + |C_V|^2) + |M_{GT}|^2 (|C_T|^2 + |C_A|^2 + |C_T|^2 + |C_A|^2)
$$

 \Box *D* is primarily sensitive to the relative phase between V and A couplings

 \Box R is sensitive to the linear combination of imaginary parts of scalar and tensor couplings

T-violation in *β*-decay

\Box T-violation in β -decay may arise from:

- **o** semileptonic interaction ($d \rightarrow u e^- v_e$)
- o nonleptonic interactions

□ SM-contributions for *D*- and *R*-correlations:

o Mixing phase δ_CKM gives contribution which is 2nd order in weak interactions:

$< 10^{-10}$

 \bf{o} θ -term contributes through induced NN PVTV interactions: $< 10^{-9}$

\Box Candidate models for scalar contributions (at tree-level) are:

- o Charged Higgs exchange
- o Slepton exchange (R-parity violating super symmetric models)
- o Leptoquark exchange

\Box The only candidate model for tree-level tensor contribution is:

o Spin-zero leptoquark exchange.

Measurements of triple correlations in β -decay provide direct, i.e. first-order access to the T-violating part of the weak interaction coupling constants

The *R*-correlation in neutron decay correlation in neutron decay

- ❏ Transverse electron polarization component contained in the plane perpendicular to the parent polarization.
- ❏ Not measured for the decay of free neutron yet!
- ❏ Using the formula of D.J. Jackson et al., Phys. Rev. 106, 517 (1957)

$$
R = \frac{\text{Im}\left[\left(C_{V}^{*} + 2C_{A}^{*}\right)\left(C_{T} + C_{T}^{'}\right) + C_{A}^{*}\left(C_{S} + C_{S}^{'}\right)\right]}{\left|C_{V}\right|^{2} + 3\left|C_{A}\right|^{2}}
$$

and defining: and defining:

$$
S = \operatorname{Im}\left(\frac{C_S + C_S}{C_A}\right); \quad T = \operatorname{Im}\left(\frac{C_T + C_T}{C_A}\right)
$$

❏ One obtains finally:

$$
R = 0.28 \cdot S + 0.33 \cdot T
$$

Anticipated accuracy of the present experiment: $\it{\Delta}R$ (neutron) $\approx 5\!\!\times\!\!10^{\text{-}3}$

Figure 1: Results from the experiments testing time reversal symmetry in the scalar and tensor weak interaction. The bands indicate $\pm 1\sigma$ limits. Constraints from the study of the R-correlation in the free neutron decay with an accuracy of ± 0.005 are attached. This prediction is arbitrarily fixed at $S, T = 0$.

23-Mar-2007

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 7

Transverse electron polarization Transverse electron polarization

❏ *R* coefficient can be obtained from the transverse electron polarization

The *N*-correlation

 \Box Can be determined from the transverse electron polarization component contained in the plane of lepton momentum and parent polarization:

$$
N = \langle \vec{\sigma}_{T1} \rangle / \sin \theta_e,
$$

Q Conserves T and P; not measured for β -decay yet

$$
N \cdot \xi = 2 \cdot |M_{GT}|^2 \frac{1}{I+1} \cdot \text{Re}[\frac{1}{2E}(|C_T|^2 + |C_A|^2 + |C_T|^2 + |C_T|^2 + |C'_A|^2) + (C_T C_A^* + C_T C_A^*)]
$$

+ 2 \cdot M_F M_{GT} \sqrt{\frac{I}{I+1}} \cdot \text{Re}[(C_S C_A^* + C_V C_T^* + C_S C_A^*) + (C_V C_T^*) + \frac{m}{E}(C_S C_T^* + C_V C_A^* + C_S C_T^*) + C_V C_A^*)]

The *N*-correlation in neutron decay correlation in neutron decay

- ❏ Can be deduced from the transverse electron polarization component contained in the plane parallel to the parent polarization. polarization.
- \Box Scales with the decay asymmetry A ($\lambda \equiv C_A/C_V$):

$$
N^n_{\rm SM}=-\frac{m}{E}\,A_{\rm SM}=\frac{m}{E}\frac{2\big(\lambda^2+\lambda\big)}{1+3\lambda^2}\!\approx+0.1173\frac{m}{E}
$$

 $N^n_{\text{\tiny SM}}\sqcup 5\!\times\!10^{\texttt{-2}}\!\square\,10\!\cdot\!\varDelta R_n(\text{anticipated})$

- ❏ Self calibration tool for *R*-correlation measurement.
- **Excellent cross check for systematic effects in** R **-correlation.**

Conclusion:

Simultaneously measure both components of the transverse polarization of electrons emitted in neutron decay

FUNSPIN – Polarized Cold Neutron **Facility at PSI**

Figure 4: Layout of the Polarized Cold Neutron Facility at PSI.

Mott scattering

0 Mott scattering:

- Analyzing power caused by spin-orbit force
- –Parity and time reversal conserving (electromagnetic process)
- –- Sensitive exclusively to the transversal polarization

Mott polarimeter

\Box Challenges: Challenges:

- o Weak and diffuse decay source
- oElectron depolarization in multiple Coulomb scattering
- oLow energy electrons $\left(< 783 \text{ keV} \right)$
- oHigh background (n-capture)

\Box Solutions:

- o Tracking of electrons in low-mass, low- Z **MWPCs**
- o Identification of Mottscattering vertex
- oFrequent neutron spin flipping
- o "foil-in" and "foil-out" measurements

Experimental setup

MWPCs, scintillators and electronics

"Single-track events"

Energy calibration Energy calibration

\Box Conversion electrons from ²⁰⁷Bi

β -energy distribution – background subtraction

Decay asymmetry

$$
\mathcal{A}(\gamma) = \frac{\omega(\gamma, +P_{n}) - \omega(\gamma, -P_{n})}{\omega(\gamma, +P_{n}) - \omega(\gamma, -P_{n})} = P_{n}A_{n} \cdot \beta \cos \gamma
$$

"V-tracks": Mott scattering events

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 21

23-Mar-2007

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 22

23-Mar-20 \mathbb{R} and \mathbb{R} and *x* λ γ *z* Scint.<u>, Scint. Scint. Scint.</u> MWPC Pb-foil Pb-foil Projection of vertices onto XY-plane

Projection of vertices onto Pb-foil planes

Mott scattering vertex distribution

"Short-arm" asymmetry

 \Box "Short-arm" of a V-track must reveal UP-DOWN asymmetry (β-decay)

Influence of magnetic field on V-tracks

 \Box Bending of electron tracks in the magnetic field of about 0.5 mT can be traced back in the matching of track segments

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 27

Projection of V-track events onto α

Electron transverse polarization Electron transverse polarization

❏ Mott scattering asymmetry:

oEfficiency and acceptance are complicated and unknown functions but they do not change with neutron spin flip

$$
\overline{X}(\alpha) = \frac{\overline{\omega}(P, \alpha) - \overline{\omega}(-P, \alpha)}{\overline{\omega}(P, \alpha) + \overline{\omega}(-P, \alpha)}
$$

$$
= AP\overline{\beta}\overline{F}(\alpha) + P\overline{\beta}\overline{S}(\alpha)\left[N'\overline{G}(\alpha) + R\overline{H}(\alpha)\right]
$$

$$
N' = N/\beta
$$

$$
\overline{F}(\alpha) = \langle\hat{J} \cdot \hat{p}_e\rangle, \quad \overline{G}(\alpha) = \langle\hat{n} \cdot \hat{J}\rangle, \quad \overline{H}(\alpha) = \langle\hat{n} \cdot (\hat{J} \times \hat{p}_e)\rangle
$$

- $\,$ **o** $\,$ Average values of the geometry factors $\,$ $\,F$ $(\alpha),$ $\,G$ $(\alpha),$ $\,H$ $(\alpha),$ $\,\overline{\beta}$ (α) are calculated event-by-event from reconstructed momenta and are known to a high precision
- **o** Asymmetry parameter A is taken from another, high precision, dedicated experiment

Geometrical factors

23-Mar-2007

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 30

Electron transverse polarization Electron transverse polarization

P R E L I M I N A R Y

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 31

Electron transverse polarization Electron transverse polarization

\Box Super-ratio:

- oMakes use of geometrical symmetry of the detecting system
- oCorrection due to decay asymmetry suppressed by an order of magnitude (\sim 0.1 → \sim 0.01)
- **o** Only *N* parameter can be extracted

$$
\overline{F}(-\alpha) \Box \overline{F}(\alpha), \quad \overline{G}(-\alpha) \Box - \overline{G}(\alpha), \quad \overline{H}(-\alpha) \Box \overline{H}(\alpha)
$$
\n
$$
\overline{S}(-\alpha) \Box \overline{S}(\alpha), \quad \overline{\beta}(-\alpha) \Box \overline{\beta}(\alpha)
$$
\n
$$
\overline{E}(\alpha) = \frac{\overline{r}(\alpha) - 1}{\overline{r}(\alpha) + 1}, \quad \overline{r}(\alpha) = \sqrt{\frac{\overline{\omega}^+(\alpha)\overline{\omega}^(-\alpha)}{\overline{\omega}^+(\alpha)\overline{\omega}^-(\alpha)}}
$$
\n
$$
\overline{E}(\alpha) \Box \frac{N \cdot P\overline{S}(\alpha)\overline{G}(\alpha)}{1 - \frac{1}{2} \Big[P A \overline{\beta}(\alpha) \overline{F}(\alpha) \Big]^2}
$$

Electron transverse polarization (from "super-ratio")

P R E L I M I N A R Y

Limits on S and T coupling constants

Conclusions

- Collected data are sufficient for Collected data are sufficient for Δ*R* = 0.010 = 0.010 [÷] 0.015
- \Box Assessment of systematic effects in progress
- \Box Total experimental uncertainty is dominated by statistics
- \Box Final data taking scheduled for 2007 (4 months)
- \Box The anticipated accuracy $\Delta R = 0.005$ should be reached (if nothing unexpected happens!)

What next?

2nd-generation experiment

- \Box Feasible sensitivity: $\varDelta R = 5 \!\times\! 10^{\text{-}4}$
- \Box Needed 10⁸ reconstructed V-track events
- General features of the experimental setup:
	- o Axial polarimeter geometry
		- **2.5 m long beam acceptance**
	- o Drift chambers:
		- **Hexagonal cell geometry**
		- **•** *x*-,*y*-coordinates from drift time
		- *z***-coordinate from charge division**
		- Reduced pressure $(0.2-0.3$ bar) both in the beam line and in the drift chambers (promising tests underway)
	- o Additional background suppression:
		- **pulsed beam (?)**
		- \blacksquare ³He spin filter (?)

\Box Overall gain factor in the rate of reconstructed V-track events: $20 - 30$ (as compared to the present setup)

2nd-generation experiment

Questions

- **Q** Final State Interaction ?
- D Direct vs. indirect constrains ?
- **Q** Sensitivity to particular models?

1st order FSI contribution

$$
R_{\text{FSI}} \cdot \xi = 2 \cdot \frac{\alpha Z m}{p} \cdot [|M_{GT}|^2 \frac{1}{I+1} \cdot \text{Re}(C_T C_T'^* - C_A C_A'^*)
$$

+
$$
M_F M_{GT} \sqrt{\frac{I}{I+1}} \cdot \text{Re}(C_S C_T'^* + C_S' C_T^* - C_V C_A'')]
$$

n In the SM:

$$
C_V = C'_V = \text{Re}C_V = 1, C_A = C'_A = \text{Re}C_A = -1.26,
$$

\n
$$
|C_S|, |C'_S|, |C_T|, |C'_T| = 0:
$$

\n
$$
R_{\text{FSI,SM}} = \frac{\alpha Z m}{p} \cdot A_{\text{SM}}.
$$

\nFor neutron decay, A = -0.1173(13)
\n
$$
R_{\text{SM}}^n \approx 0.001
$$

Theoretical uncertainty of R_{FSI}

- **Q** Jackson's formula [Nucl. Phys. <u>4</u> (1957) 206]:
	- o "Allowed approximation"
	- o Electron wave function for point like Coulomb potential
	- $\, \bullet \, \, \Rightarrow$ Theoretical uncertainty: $\varDelta R_{\rm FSI}/R_{\rm FSI} \approx 10 \, \%$
	- ${\sf o} \ \Rightarrow {\it \Delta} R_{\rm FSI}({\rm neutron}) \approx 10^{\text{-}4}$
- □ Vogel & Werner [NP <u>404</u> (1983) 345] corrected for:
	- o 2nd-forbidden term
	- oHigher terms in the lepton function expansion
	- o**o** Radiative effects
	- o Finite nuclear size
	- o Electron screening effect
	- $\mathbf{o} \Rightarrow$ Theoretical uncertainty: $\Delta R_{\rm FSI}/R_{\rm FSI} \approx 1$ %
	- $\textsf{o} \Rightarrow \varDelta R_{\text{FSI}}(\text{neutron}) \approx 10^{\text{-}5}$

- \Box Specific case for neutron decay:
	- oCorrections for proton charge distribution are small (small energy release); can be calculated (A. Czarnecki) with improved proton charge radius (from muonic hydrogen Lamb shift – PSI project)
	- o No uncertainty due to atomic screening
	- $\, \bullet \, \, \Rightarrow$ Expected theoretical uncertainty: $\varDelta R_{\rm FSI}/R_{\rm FSI} \approx 0.5 \, \%$
	- ${\sf o} \Rightarrow \varDelta R_{\rm FSI}(\text{neutron})\approx 5{\times}10^{\text{-}6}$

"Discovery potential" or "exclusion power" (4 standard deviations) of the R-parameter in the free neutron decay with $\tt{present}\text{ FSI}$ theory is: $R_{\text{n}}\approx 2\!\times\!10^{\text{-}5}$

Im
$$
(C_S + C_S)
$$
 + 1.2×Im $(C_T + C_T)$ \approx 10⁻⁴

Indirect bounds for $\text{Im}(C_{S,T}+C_{S,T})$

❏ Khriplovich & Lamoreaux (1997), P. Herczeg (2001):

oIndirect, stringent bounds on T-odd, P-even interactions are obtained from atomic EDM searches:

$$
\operatorname{Im} \left(\, C_{S,T}^{} + C_{S,T}^{'} \, \right) \quad \leq \quad 10^{-4}
$$

- \Box Linear combination of $\mathrm{Im}(C_S+C_S)$ and $\mathrm{Im}(C_T+C_T^*)$:
	- oDifferent than in the *R*-correlation
	- oWeaker bounds on $\text{Im}(C_S+C_S)$ than on $\text{Im}(C_T+C_T)$
	- oModel uncertainty may be large

Should the indirect limits from atomic Should the indirect limits from atomic EDMs be viewed as complementary rather than competitive to the direct ones from R-correlation ?

Sensitivity to particular models

Contrary to D-coefficient, *R*-coefficient lacks of a particular model scenario where it could outperform other methods

Is the above statement true ?

Suggestions from theory are welcomed !

Backup slides

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 45

Mott polarimeter

23-Mar-2007

K. Bodek, INT Workshop on EDMs and CP-Violation, Seattle, 2007 47