Constraint on the Coupling of Axion-like Particles to Matter with an Ultracold Neutron Experiment

Stefan Baeßler

The Collaboration:

Institut Laue-Langevin: H.G. Börner L. Lucovac V.V. Nesvizhevsky A.K. Pethoukov

J. Schrauwen

JINR Dubna: A.V. Strelkov

LPSC Grenoble: K.V. Protasov

PNPI Gatchina:

T.A. Baranova A.M. Gagarski T.K. Kuzmina G.A. Petrov

FIAN Moscow: A.Y. Voronin

University of Heidelberg:

H. Abele
S. Nahrwold
C. Krantz
F.J. Rueß
Th. Stöferle
A. Westphal

University of Mainz: S. Raeder S.B.

Gravitational Bound states – The idea

Early proposals:

•Neutrons: V.I. Lushikov (1977/78), A.I. Frank (1978) •Atoms: H. Wallis et al. (1992)

Gravitational Bound states – The experiment

•Effective (vertical) temperature of neutrons is ~20 nK

- •Background suppression is a factor of $\sim 10^8$ - 10^9
- •Absolute horizontal leveling precision is $\sim 10^{-6}$ rad

•Parallelism of the bottom mirror and the absorber/scatterer is $\sim 10^{-6}$

Calibration of the Absorber Height

- Capacitors (To be calibrated)
- Long-Range Microsocope (*)
- Wire Spacers ()
- Micrometric Screw (□)

How does an absorber work?

The tunneling model

Position-Sensitive Detector

Picture of developed detector with tracks

Results with the Position-Sensitive Detector

Motivation for the Axion

Original Proposal: F. Wilczek, 1978

Solution to the "Strong CP Problem": The electrical dipole moment d_n of the neutron is ...

- Latest experimental limit: $|d_n| < 2.9 \times 10^{-26} \text{ ecm } (90\% \text{ C.L.})$
- Prediction from the Standard Model, perturbative: $|d_n| = 10^{-31} .. 10^{-32}$ ecm
- Prediction from QCD, non-perturbative: $|d_n| = \Theta \cdot 10^{-16}$ ecm (+ perturbative terms)

A slightly more constraining result can be derived from atomic EDMs

If there were an Axion, then $\Theta = 0$.

Modern interest:

Axion is a candidate for dark matter. All couplings are weak.

Possible experimental signatures

Incomplete List:

- Astronomy und Cosmology
- Particle accelerators (additional decay modes)
- Conversion of Galactic Axions in a magnet field into microwave photons:

• Light shining through walls:

Three Macroscopic Potentials

scalar-scalar:
$$V(r) = -g_s^{-1}g_s^{-2}\frac{1}{4\pi r}\exp(-r/\lambda)$$

Allowed range: $\lambda = 20 \ \mu m \dots 200 \ mm$ (corresponding to $m_{\alpha} = 10^{-2} \ eV \dots 10^{-6} \ eV$) Looks like 5th force (see Hartmut's talk).

scalar-pseudoscalar:
$$V(r) = -g_s^{-1}g_P^{-2}\frac{\sigma_2 \cdot \hat{r}}{8\pi m_2 c} \left[\frac{1}{r\lambda} + \frac{1}{r^2}\right] \exp(-r/\lambda)$$

Most often done with electrons as polarized particle. Coupling Constants are not equal.

pseudoscalar-pseudoscalar:
$$V(r) = -g_P^{-1}g_P^{-2}\frac{1}{16\pi m_1 m_2 c} \Big[(\sigma_1 \cdot \sigma_2) f(r) + (\sigma_1 \cdot \hat{r}) (\sigma_2 \cdot \hat{r}) g(r) \Big]$$

Disappears for an unpolarized source

Effect on Gravitationally Bound States

Integration of 2nd potential over mirror:

$$V(z) = -g_s^{N} g_P^{n} \frac{\hbar \rho_m \lambda}{8m_n^2 c} \exp(-z/\lambda) \underbrace{(\sigma_n \cdot \hat{z})}_{+1}$$

Inclusion of absorber:

$$W(z) = \pm g_s^{N} g_P^{n} \frac{\hbar \rho_m \lambda}{8m_n^2 c} \underbrace{\left[\exp\left(-\frac{z}{\lambda}\right) - \exp\left(-\frac{(\Delta h - z)}{\lambda}\right) \right]}_{\frac{2z}{\lambda} + \text{const.}}$$

After dropping the invisible constant piece,

W(z) is linear in z

$$g \rightarrow g_{\text{eff}} = g \pm g_s^N g_P^n \frac{2\hbar\rho_{\text{m}}}{8m_{\text{n}}^3 c}$$

Our limits are calculated from a shift of the turning point by 3 μ m.

$$z_1 = 2.34 \sqrt[3]{\frac{\hbar^2}{2m^2g}} = 13.7 \ \mu \text{m}$$
$$z_2 = 4.09 \sqrt[3]{\frac{\hbar^2}{2m^2g}} = 24.0 \ \mu \text{m}$$

Extraction of our Limit

Why can we use unpolarized neutrons?

Exclusion Plot

Heckel et al., 2006:

Summary

- Gravitationally Bound Quantum States detected with Ultracold Neutrons
- Characteristic size is $\sim \mu m$
- Interaction with Axion would change potential
- Bound State Size is expected from Standard Gravitation
- \Rightarrow Exclusion of a strong Axion potential