INT-05-3

Dynamical pairing effects on soft quadrupole vibrations in deformed unstable nuclei close to the neutron drip line

> Kenichi Yoshida (Kyoto Univ.) In collaboration with Masayuki Yamagami (RIKEN) Kenichi Matsuyanagi (Kyoto Univ.)

> > 10/11/05

Collective vibrations ~ superposition of particle-hole excitations

stable nuclei

drip-line nuclei

coupling to continuum states

•Excitations into the continuum

Pair correlations in the continuum

Mechanism for generation of collective modes in the new situation ?

Dominance of single-particle excitation

Octupole excitations on SD state in 50 S

K.Yoshida et al., PTP113 (2005), 1251

Deformed RPA without pairing

Single-particle excitation from weakly bound to resonant state is dominant.

 $X_{ph} \simeq 0.97$

Collective modes disappear ?? Effect of pairing

QRPA calculations for investigation properties of excitation modes in neutron-rich nuclei

Spherical nuclei	e.g. Matsuo et al., PRC71 (2005), 064326
pairing	Hartree-Fock-Bogoliubov method
continuum	Out-going boundary condition
Deformed nuclei Hagino et al., NPA731 (2004), 264c	
pairing	BCS approximation, neglect dynamical pairing
continuum	Box boundary condition
	F undation in achieve liberate

deformation Expansion in spherical basis

Low-lying modes unique to neutron-rich nuclei

Quadrupole vibration of neutron skin

In deformed superfluid system Soft K=0+ mode ? close to the drip line

QRPA calculation simultaneously taking into account

First results of such a calculation

Investigation of deformed neutron-rich nuclei

Ground state

Coordinate-space HFB equation

$$\begin{pmatrix} h(\mathbf{r}) - \lambda & \tilde{h}(\mathbf{r}) \\ \tilde{h}(\mathbf{r}) & -h(\mathbf{r}) + \lambda \end{pmatrix} \begin{pmatrix} \varphi_1(E, \mathbf{r}) \\ \varphi_2(E, \mathbf{r}) \end{pmatrix} = E \begin{pmatrix} \varphi_1(E, \mathbf{r}) \\ \varphi_2(E, \mathbf{r}) \end{pmatrix} \\ E_{\text{cutoff}} = 50 \text{MeV}$$

 $\begin{array}{ll} \mbox{Mean-field} & \mbox{Deformed Woods-Saxon potential} \\ h = -\frac{\hbar^2}{2m} \nabla^2 + V_{\rm WS} f + V_{\rm SO} \nabla f \bullet (\sigma \times {\bf p}) \\ f(\rho,z) = 1/(1 + \exp[(r - R(\theta))/a]), \ r^2 = \rho^2 + z^2 \end{array}$

Pair-field Density-dependent delta interaction $\tilde{h} = \frac{V_0}{2} \left(1 - \frac{\rho(\mathbf{r})}{\rho_0} \right)$

 $V_0 = -450 \text{ MeV fm}^3$, $\rho_0 = 0.16 \text{ fm}^{-3}$

Excited state

QRPA equation in the AB matrix formulation

$$\sum_{\gamma\delta} \begin{pmatrix} A_{\alpha\beta\gamma\delta} & B_{\alpha\beta\gamma\delta} \\ B_{\alpha\beta\gamma\delta} & A_{\alpha\beta\gamma\delta} \end{pmatrix} \begin{pmatrix} X^{\lambda}_{\gamma\delta} \\ Y^{\lambda}_{\gamma\delta} \end{pmatrix} = \hbar \omega_{\lambda} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X^{\lambda}_{\alpha\beta} \\ Y^{\lambda}_{\alpha\beta} \end{pmatrix}$$

Residual interaction

p-h channel
$$v_{\rm ph}(\mathbf{r},\mathbf{r}') = [t_0(1+x_oP_\sigma) + \frac{t_3}{6}(1+x_3P_\sigma)\rho(\mathbf{r})]\delta(\mathbf{r}-\mathbf{r}')$$

p-p channel $v_{\rm pp}(\mathbf{r},\mathbf{r}') = V_0 \left(1 - \frac{\rho(\mathbf{r})}{\rho_0}\right)\delta(\mathbf{r}-\mathbf{r}')$

Spurious modes should be zero excitation energy. $v \rightarrow f \cdot v$ Normalize the interaction strength

Deformed unstable nuclei

Low-frequency quadrupole vibrations in deformed Mg isotopes close to the drip line

Isoscalar quadrupole transition strengths (intrinsic)

Soft K=0⁺ mode in deformed ⁴⁰Mg

Physically meaningful or box artificial?

Structure of soft K=0⁺ mode in ⁴⁰Mg

Properties of positive energy states

 $\Omega^{\pi} = 1/2^{-}$ $\Omega^{\pi}=3/2^{-}$ Energy (MeV) Energy (MeV) -2 -2 -4 -4 ρ_{max} (fm) ρ_{max} (fm) $\Omega^{\pi} = 1/2^{-}$ $\Omega^{\pi} = 3/2^{-}$ Radius (fm) Radius (fm) -15 -10 -25 -20 -15 -10 -5 -20 -5 Energy (MeV) Energy (MeV)

Main 2qp excitations generating the K=0⁺ state are associated with one-particle resonant or bound states.

This $K=0^+$ mode can be considered as a resonance.

Box size dependence

 $\rho_{\text{max}} \times z_{\text{max}} = 10.0 \text{ fm} \times 12.8 \text{ fm}$

 $\rho_{\text{max}} \times z_{\text{max}} = 13.2 \text{ fm} \times 16.0 \text{ fm}$

Trial wave functions

Two-neutron pair transition strengths

$$\hat{T}_{add} = \int d\mathbf{r} r^2 Y_{20} \psi^+(\mathbf{r},\uparrow) \psi^+(\mathbf{r},\downarrow) , \quad \hat{T}_{rem} = \int d\mathbf{r} r^2 Y_{20} \psi(\mathbf{r},\downarrow) \psi(\mathbf{r},\uparrow)$$
$$|\langle \lambda | \hat{T} | 0 \rangle|^2$$

Neutron-pair creation/annihilation

Collective both in p-h and in p-p channel

How to generate the coherent mode?

Why are the transition strengths large? ~ 10-20 W.u. (intrinsic)

Pair correlation

Effect of dynamical pairing

Weakly bound system

Spatial structure of quasiparticle wave functions

Dynamical pairing

Superposition of p-h, p-p and h-h vibrations

Spatial structure of 2qp excitations (p-h channel)

Spatial structure of 2qp excitations (p-p, h-h channel)

Soft K=2⁺ mode in deformed ⁴⁰Mg

Neutron-pair creation/annihilation

Summary

We have investigated properties of excitation modes in deformed Mg isotopes close to the neutron drip line.

Deformed QRPA calculation based on coordinate-space HFB including the continuum

We have obtained soft K=0⁺ and 2⁺ modes in ³⁶⁻⁴⁰Mg.

Spatial extension of two-quasiparticle wave functions

Coupling between quadrupole vib. and pairing vib.

Similar spatial structure of quasiparticle w.f. near the Fermi level

K=0⁺ mode is particularly sensitive to the dynamical pairing.

Good indicator of pair correlation in deformed drip-line nuclei