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Symmetry energy, masses and 
T=0 np-pairing

Can we measure the T=0 pair gap?
Do the moments of inertia depend on T=0 pairing?
Do masses evolve like  T(T+1) or T^2  (N-Z)^2?
Origin of the linear term in mean field models
Investigation of the symmetry energy in Skyrme HF and RMF
New insight into the symmetry energy

Collaborator: W Satula, Univ. Warsaw, Shufang Ban, KTH



Structure of 
Nucleonic Pairs

• N=Z à (almost) identical wavefunctions
• particle particle interaction between pairs with identical orbits
• Pauli Principle

Isovector Pairs T=1, S=0

+

-

Neutron
Proton

Isoscalar Pairs T=0, S=1



Generalised pairing interaction

• Start from a basis in which signature α is a good quantum number: 
Rx(π )|φj> =+/-i |φj> = eiα |φj>,α =+/- 1/2, 

• The standard pairing interaction scatters pairs in opposite signature orbits,  

• All possible couplings need to be present: T=1 nn, pp, and T=1 np

• For the T=0 pairing, two different couplings are possible:
a) a T=0 np pair scatters between orbits of opposite signature, 

• b)a T=0 np pair scatters between orbits of the same signature, 

αααα ′′↔

αααα ′′↔

αααα ′′↔



Employ approximate number projection via L.N.

Investigate the BCS- and HFB solution as a function of strength

-BCS G T=0/G T=1 =? and HFB   G T=0/G T=1 =?

Investigate the generalised pairing hamiltonian



BCS T=0,1 Pairing Hamiltonian

Pairs:

BCS Hamiltonian

p-ñ + n-p Pairs ; T=1

p-ñ – n-p Pairs; T=0

ñ-n and p-p « usual » Pairs; T=1

p-n and p-ñ Pair 

~

~

~
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Intensity T=0/T=1 ; Resultats (1)

48Cr Calculation 1) meanfield = W.S. 2) X=

X X

W.Satula, R.Wyss
PLB 393 (1997) 1

Incompatible?

-T=1, Tz=+1,-1 with Tz=0

-T=1 with T=0

/



Iso spin mixing due to T=a pairing interaction

•T=1 pairing violates iso-
spin – resulting in 
deformation in iso-space
•T=0 pairing restores iso 
spin (scalar in iso space)
•We need iso spin 
breaking to calculate iso 
spin excited states. 



Mass excess due to Wigner energy

Mass defect with respect to
the Thomas Fermi model.
The fitted curve is given by
C(I)=10e(-4.2|I|) /MeV,
I= N-Z = 1/2 Tz
(Myers Swiatecki, NPA612
(1997),249

In semiempirical massformulas
one adds the Wigner energy;

odd

even

N=Z nuclei appear to be more bound, o-o have a repulsive term



Skyrme HF masscalculations S. Goriely et.al. PRC68 (2003) 
054325, fully microscopic, rms=0.675, use a macroscopic
Wigner Energy:

Additional binding
from microscopic 
calculations due to 
T=0 pairing, W. Satula
and R.W. 
NucPhA676 (2000) 120
and PLB393 (1997)1



Mass excess in N=Z nuclei
• Nuclei along the N=Z are more bound 

B.E.=asymT(T+1.25)
• Isovector pairing weakens ’ asym ’
T=0 pairing increases binding

/X=

Extended Thomas-Fermi
X=1.1
X=1.2
X=1.3
X=1.4
Wigner term(Myers-
Swiatecki)

Gain in binding energy
E(T=0+1)- E(T=1)



αα

T=0

T=1

T=0

Generic features 
of the alignment 
in the presence of 
the different T=0 
and T=1 pairing 
modes

αα
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Effect of T=0 Pairing on MoI



Level-
scheme
of 73Kr
N.S.Kelsall et. 
al., Phys.Rev. 
C65, 044331 
(2002)

ν p3/2-f5/2 (p/f) 
neg. par.

ν g9/2 
pos. par.



WS sp diagramme



Alignments 
and 
Routhians 
for 73Kr

g9/2
(π,α)(+,+1/2)

p/f
(π,α):(-, -1/2)

p/f
(π,α):(-,+1/2)good agreement

for low spin for the two 
neg. par. bands –
disagreement at high spins

good agreement for the 
pos.par. band (g9/2) over 
the entire spin range



exp. p/f neg par

calcs. p/f neg par



Assume an entire different 
configuration:
Move the neutron from neg. par. 
f/p orbit into g9/2 and make a 2qp 
proton excitation from a f/p orbit 
into g9/2

ν g9/2 pos par (+,+1/2 ) 
Π:[f/pqg9/2] neg par (-,-/+1/2)

Calculations
configuration II



Alignment 
and Routhian 
for the new 
configuration

p/f
(π,α):(-, -1/2)

p/f
(π,α):(-, +1/2)

g9/2
(π,α)(+,+1/2)



T=1 scenario:

>∏>∏ +++
πππνν ααα BCSBCS fpgg )()2/9()2/9(

>∏>∏+
πννα BCSBCSg )2/9(

>∏>∏+
πννα BCSBCSpf )/(conf I

conf II

conf g9/2

<conf I |O (E2) |  conf II >     forbidden
<conf II |O (E1)  | conf g9/2> allowed



Level-
scheme
of 73Kr

E1 allowed
E2
forbidden

configuration I

configuration II

conf.
g9/2



Scattering of a T=0 np pair

p/f
g
p/f
g

p/f
g
p/f
g

ν f5/2
neg par

πconf I

p/f
g
p/f
g

p/f
g
p/f
g

ν g9/2
pos par

Π:[f/pqg9/2]
neg par

conf II



TRS 
calculations 
with T=0 and 
T=1 pairing

Same configuration 
blocked in both 
calculations – phase 
transition from T=1 
to T=0 pairing

T=1 calculations
configuration f/p

T=1 and T=0 calculations
configuration f/p



T=0 scenario

• conf I and conf II belong to the same band –
become mixed via the T=0 pairing matrix element

• Phase transition from T=1 pairing at low spins to 
T=0  pairing at high spins

• Similar case in 75Rb (Tz=1/2)



Competition between 2qp excitation 
and symmetry energy in o-o nuclei

E(MeV)

A

2)

T=0 states in
o-o nuclei are
2qp excitations
-1/sqrt(A)

T=1states have 
larger symmetry 
energy -1/A



Symmetry Energy

Esym = ½ asym T(T+1)
asym = ½ avol /A - ½ asurf /A 4/3

= 134.4/A - 203.6/A 4/3

Duflo&Zuker, PRC 52(1995)R23

groundstate in nuclei have lowest T, <T> = Tz = ½ (N-Z)

Bethe-Weizsäcker massformula: ~(N-Z)2

Standard text books:



Symmetry energy in the mean field

• Any bi-fermionic system is characterised by a symmetry 
energy, coming from the discretness of the s.p. levels (no 
assumption of any force!) This term is proportional to the 
average level spacing:

• The nuclear interaction differs between states of different 
iso-spin – resulting in an additional iso vector potential. 
This potential can be obtained e.g. from an interaction

• This interaction leads to a term E=κ T2, i.e. κ Tz2 = 
κ ¼ (N-Z)2 (Hartree approx) Taking into account the 
exchange term (Fock), E= κ Τ(Τ+1)
(see e.g B&M, vol 1)

W. Satula and RW

21 1
( )

2 2s y mE T Tε κ κ= +  +  



Investigate this concept in Skyrme HF-BCS

• The Skyrme HF can be divided in an iso scalar Γ0
and iso vector potential Γ1. There are 5 isoscalar and 
5 isovector densisties and related coupling 
constants.

• Switch off the iso vector part and calculate the 
average spacing as a function of (N-Z)

• Determine κ via calculating the full functional



Symmetry energy in Skyrme HF

The different 
Skyrme forces have 
different effective 
mass. Once the 
level spacing ε is 
corrected for the 
effective mass, 
ε’= m*/m  ε
the coefficients 
become very 
similar. Shaded 
area corresponds to 
average spacing

No linear term!



Spread in kinetic energy



Skyrme iso vector potential

•The Skyrme 
functional has an iso 
vcector potential that 
is proportional to 
T(T+1) and can be 
characterised by a 
single coefficient, κ

•The smaller the 
effective mass, the 
smaller the iso vector 
potential!



Global fit to ε and κ



why is ε∗=κ∗ ?



Surface to volume ration

Neutron skin thicknes determined by rS/V=aS/aV
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Symmetry energy in SHF

• Symmetry energy obtained as 

• Value of aV (asym=aV/A + aS/A4/3) close to value 
from  infinite nuclear matter

• Fundamental property that ε∗ = κ∗ ?



Test the same concept in RMF

• Strong interaction – disregard Coulomb
• What is the size of the linear term?
• What are the values of asym=aV/A + aS/A4/3



Effect of pairing Effect of pairing 

RMF BCS
TE +

RMF BCS
TE +%

21 1
( 1)

2 2
RMF BCS RMF BCS
T TE E T or T Tκ κ+ +− =     +%

RMF BCSκ +

without isovector meson ,g gσ ωσ ω  

RMF
TE% 2

0

1
2

RMF RMF
T TE E Tε=− =% % ε

withwith isovector meson , ,g g gσ ω ρσ ω ρ    

RMF
TE 21 1

( 1)
2 2

RMF RMF
T TE E T or T Tκ κ− =     +% κ . .,i e  RMFκ

Formalism to determine ε and κ in RMF



Symmetry 
energy in RMF
from 
level spacing

• ε is constant for
large Tz

•After effective 
mass scaling m*/m
within
imperical limits



Determine κ
from the full
Lagrangian,
including the
ρ-meson



The nuclear symmetry energy in RMF, Esym=a T(T+1)



The nuclear symmetry
energy in RMF follows
rather closely the 
values by Duflo Zuker



Symmetry energy in RMF
• Concept of the symmetry energy composed by two 

terms, the average level spacing at the Fermi 

surface and an average potential with strength κ

• The volume term of the symmetry energy aV

(asym=aV/A + aS/A4/3) determined in finite nuclei is 
much smaller than the on in infinite nuclear matter 
aV (asym=aV/A + aS/A4/3)

• Surprisingly, the RMF theory which is a Hartree
approximation generates a symmetry energy Esym 

that is fitted nicely by a T(T+1) dependence.


