Nonempirical Density Functionals that work and Useful Extensions

Jianmin Tao

Department of Physics, University of Missouri-Columbia, Columbia, MO 65211

- General idea
- MGGA for Exchange
- MGGA for Correlation
- Useful Extensions

General idea

- DFT is the most popular method for electronic structure calculations of a many-electron system.
- No other method achieves comparable accuracy at the same cost.

The art of constructing $E_{\rm xc}[n_{\uparrow}, n_{\downarrow}]$ embodies two different philosophies: Empiricism and nonempiricism.

- Empiricism: No hope of writing down the exact universal functional, the best strategy is to make a guess in a parametric form and optimize it by fitting to a set of experiments.
- Nonempiricism: $E_{\rm xc}$ should be developed from first principles by incorporating known exact constraints. If a sufficient number of such constraints is satisfied, properties will come out right by themselves.

HEAVEN OF CHEMICAL ACCURACY

Figure 1: Jacob's ladder of DFT approximations for $E_{xc}[n_{\uparrow}, n_{\downarrow}]$.

PKZB meta-GGA:

- successful in condensed matter physics and thermochemistry such as atomization energies, but PKZB bond lengths are less accurate than those of GGA
- PKZB exchange contains an empirical parameter fitted to atomization energies

Paradigm densities:

- Condensed matter physics: Slowly-varying density (limit A)
- Quantum chemistry: One- and two-electron densities (limit B)

PKZB gives a unbalanced description of the paradigm densities:

- PKZB correlation was designed to be good in these limits.
- PKZB exchange was only designed to be right in limit A.
- J. P. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996);
- J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, PRL 82, 2544 (1999).

Meta-GGA for Exchange

• Spin-scaling relation

$$E_{\mathbf{x}}[n_{\uparrow}, n_{\downarrow}] = \frac{1}{2} E_{\mathbf{x}}[2n_{\uparrow}] + \frac{1}{2} E_{\mathbf{x}}[2n_{\downarrow}],$$

• Uniform coordinate scaling property

$$E_{\mathbf{x}}[n_{\gamma}] = \gamma E_{\mathbf{x}}[n], \quad n_{\gamma}(\mathbf{r}) = \gamma^3 n(\gamma \mathbf{r})$$

Assumed form for meta-GGA:

$$E_{\mathbf{x}}[n] = \int d^3r \ n\epsilon_{\mathbf{x}}^{unif}(n)F_{\mathbf{x}}(p,z)$$

where
$$\epsilon_{\mathbf{x}}^{unif}(n) = -\frac{3}{4\pi} (3\pi^2 n)^{1/3}$$
, $p = s^2 = \left[\frac{|\nabla n|}{2(3\pi^2)^{1/3} n^{4/3}}\right]^2$, $z = \frac{\tau_W}{\tau}$, $\tau = 2\sum_{i=1}^{\text{occup}} \frac{1}{2} |\nabla \psi_i|^2$, and $\tau_W = \frac{1}{8} \frac{|\nabla n|^2}{n}$.

J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, PRL 91, 146401 (2003).

Assumed form for enhancement factor F_x :

$$F_{\mathbf{x}} = 1 + \kappa - \frac{\kappa}{1 + x/\kappa}, \quad x(p, z) \ge 0, \quad \kappa = 0.804$$

The assumed MGGA recovers the following behaviors:

• In the large gradient $(p \rightarrow \infty)$ limit,

$$F_{\rm x} \to F_{\rm x}^{\rm PBE},$$

No new condition for the $p\to\infty$ limit and thus no reason to change from the PBE GGA in this limit.

• In the slowly-varying limit,

$$F_{\rm x} \to 1 + \frac{10}{81}p + \frac{146}{2025}q^2 - \frac{73}{146}qp + 0 \cdot p^2 + O(\nabla^6).$$

• Recovery of the exchange energy of the hydrogen density $n_{\uparrow} = \frac{1}{\pi}e^{-2r}$: $E_{\rm x}[n_{\uparrow}, 0] = -U[n] = -0.3125$ hartree (self-interaction free).

•
$$\frac{\partial F_{\mathbf{x}}}{\partial s}\Big|_{s\approx 0.4, z=1} = 0.$$

This condition ensures that the meta-GGA potential (unlike the GGA exchange potential) has no divergence at the nucleus, where $s \approx 0.4$.

Meta-GGA for Correlation

PKZB correlation:

• PKZB correlation is a nonempirical self-interaction-free functional:

 $E_c[n_\sigma, 0] = 0 \qquad (N = 1)$

• PKZB yields much more accurate low-density limit for a spin-unpolarized density than LSD and PBE do

In the low-density limit, because electrons become classical particles and the repulsions among them are Coulombic, $E_{\rm xc}[n_{\uparrow},n_{\downarrow}]$ should become independent of relative spin polarization $\zeta = (n_{\uparrow} - n_{\downarrow})/(n_{\uparrow} + n_{\downarrow})$.

- LDA is correct
- GGA is correct
- PKZB has an incorrect dependence upon relative spin polarization ζ

TPSS correlation: Starting from the PBE GGA, TPSS correlation is constructed by

- eliminating the PBE GGA self-correlation energy as the PKZB meta-GGA does
- correcting the wrong dependence of the PKZB meta-GGA upon relative spin polarization, while preserving other correct properties of PKZB

$$E_{\rm c}^{\rm TPSS}[n_{\uparrow}, n_{\downarrow}] = \int d^3r \ n\epsilon_{\rm c}^{\rm revPKZB} \times [1 + d\epsilon_{\rm c}^{\rm revPKZB} (\tau^W/\tau)^3],$$

where $\epsilon_{\rm c}^{\rm revPKZB}(n_{\uparrow}, n_{\downarrow}, \nabla n_{\uparrow}, \nabla n_{\downarrow}, \tau_{\uparrow}, \tau_{\downarrow})$ is the revised PKZB correlation and $d = 2.8 \text{ hartree}^{-1}$.

J.P. Perdew, J. Tao, V.N. Staroverov, and G.E. Scuseria, JCP 120, 6898 (2004) for detailed explanation.

Numerical Tests

Table I: Statistical summary of the errors of three density functionals for 13 properties of molecules, solids, and surfaces. 1 kcal/mol = 0.0434 eV = 0.00159 hartree. The errors of H-bond dissociation energy are in kcal/mol.

		Mean value	Mean absolute errors		
Property (units)	Test set	of property	LSD	PBE	TPSS
Atomiz. energy (kcal/mol)	G3/99 (223 mols.)	714	121.9	22.2	5.8
loniz. potential (eV)	G3/99 (86 species)	10.9	0.23	0.24	0.24
Electron affinity (eV)	G3/99 (58 species)	1.41	0.24	0.12	0.14
Proton affinity (eV)	G3/99 (8 mols.)	6.9	5.9	1.6	1.8
Bond length $R_e~(extsf{A})$	96 molecules	1.56	0.013	0.016	0.014
Harm. freq. $\omega_e~({ m cm}^{-1})$	82 diatomics	1430	48.9	42.0	30.4
H-bond dissoc. energy	10 complexes	13.4	5.8	1.0	0.6
H-bond length $R_e~(extsf{A})$	11 H-bonds	2.06	0.147	0.043	0.021
H-bond angle (deg)	13 angles	111	4.0	2.6	2.0
Lattice constant (Å)	18 solids	4.46	0.058	0.064	0.050
Bulk modulus (GPa)	18 solids	116	15.1	7.6	8.2
$\epsilon_0^{ m cohesive}$ (eV/atom)	8 solids	4.68	0.70	0.11	0.17
$\sigma_{ m xc}~({ m erg}/{ m cm}^2)$	$r_s = 2 - 6$	1276	25	59	14
m.a.r.e. (%)	640 data above		16.2	5.2	4.8

(1) All calculations were performed self-consistently by the G03 code except the surface exchange-correlation energy of the jellium. (2) V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, JCP **119**, 12129 (2003); PRB **69**, 075102 (2004).

Conclusions: The overall order of accuracy is: LSD < PKZB < PBE < TPSS.

Extension to systems with orbital currents

Density functionals have a common limitation:

- It cannot properly describe systems in the presence of a magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$ which induces an orbital current of electrons. Such currents can be present even for external vector potential $\mathbf{A} = 0$, as in open-shell atoms.
- Example: B $(2p^1: 2p_{-1}, 2p_0, 2p_1)$. Electrons in such an atom can occupy different (degenerate) orbitals with the same total energy.

Since $E_{\rm xc}[n_{\uparrow}, n_{\downarrow}]$ fail to reproduce correct degeneracy, they avoid these currents for $\mathbf{A} = 0$ by using real (not complex) orbitals.

• Solution: Vignale and Rasolt (VR) have extended the Kohn-Sham theorems:

$$\psi_{k\sigma}(\mathbf{r}) = \psi_{k\sigma}([n_{\sigma}, \mathbf{j}_{p\sigma}]; \mathbf{r}); \quad E_{\mathrm{xc}} = E_{\mathrm{xc}}[n_{\sigma}, \mathbf{j}_{p\sigma}].$$

For slowly-varying densities and slowly-varying currents, VR presented an additive correction:

$$E_{\mathrm{xc}}[n, \mathbf{j}_p] = E_{\mathrm{xc}}[n, \mathbf{j}_p = 0] + \Delta E_{\mathrm{xc}}^{\mathrm{VR}}[n, \boldsymbol{\nu}]$$
,

G. Vignale and M. Rasolt, PRL **59**, 2360 (1987); PRB **37**, 10685 (1988); G. Vignale, M. Rasolt, and D.J.W. Geldart, Adv. Quantum Chem. **21**, 235 (1990).

where

$$\Delta E_{\rm xc}^{\rm VR}[n,\boldsymbol{\nu}] = \int d^3r \ n\epsilon_{\rm x}^{\rm unif} \frac{m}{18\pi ne^2} \left(1 - \frac{\chi_{\rm L}}{\chi_{\rm L}^0}\right) |\boldsymbol{\nu}|^2,$$

 $m{
u}(\mathbf{r}) =
abla imes [\mathbf{j}_p(\mathbf{r})/n(\mathbf{r})]$ – gauge-invariant vorticity.

 $\mathbf{j}_{p\sigma}(\mathbf{r}) = \frac{\hbar}{2mi} \sum_{k=1}^{\text{occup}} \left[\psi_{k\sigma}^* \nabla \psi_{k\sigma} - \psi_{k\sigma} \nabla \psi_{k\sigma}^* \right] - \text{paramagnetic current density.}$

Question: How can we construct $\tau([n, 0]; \mathbf{r})$ for use in $E_{\rm xc}[n, \mathbf{j}_p = 0]$ from the orbital kinetic energy density $\tau([n, \mathbf{j}_p]; \mathbf{r})$?

Under the gauge transformation,

$$\mathbf{A}
ightarrow \mathbf{A}' = \mathbf{A} -
abla \chi(\mathbf{r})$$
 ,

the orbitals ψ_k and ψ_k' corresponding to **A** and **A'** differ only by a phase factor,

$$\psi_k \rightarrow \psi'_k = \psi_k \exp\left[(ie/\hbar c)\chi\right]$$

and thus describe the same physical states.

Consider an interacting uniform electron gas (UEG) in the presence of a weak uniform magnetic field ${f B}$. By perturbation theory,

$$\epsilon(n,B) = \epsilon(n,0) - \frac{1}{2n}\chi_{\rm L}B^2 \text{ (interacting UEG),}$$

$$\epsilon^0(n,B) = \epsilon^0(n,0) - \frac{1}{2n}\chi_{\rm L}^0B^2 \text{ (noninteracting).}$$

The Vignale-Rasolt second-order energy shift is

$$\epsilon_{\mathrm{xc}}^{\mathrm{VR}} = \epsilon_{\mathrm{xc}}(n, B) - \epsilon_{\mathrm{xc}}(n, 0) = -\frac{1}{2n}(\chi_{\mathrm{L}} - \chi_{\mathrm{L}}^{0})B^{2}.$$

For a given vector potential $\mathbf{A}(\mathbf{r})$, the physical current density \mathbf{j} is found by

$$\mathbf{j}(\mathbf{r}) = \mathbf{j}_p(\mathbf{r}) + (e/mc)n(\mathbf{r})\mathbf{A}(\mathbf{r}).$$

For the UEG, \mathbf{j} vanishes, so we have

$$\mathbf{A}(\mathbf{r}) = -rac{mc}{e}rac{\mathbf{j}_p(\mathbf{r})}{n}, \;\; \mathbf{B} =
abla imes \mathbf{A} = -rac{mc}{e}oldsymbol{
u}.$$

Next we shall construct $\tau([n, \mathbf{j}_p = 0]; \mathbf{r})$ from the orbitals $\psi_k([n, \mathbf{j}_p]; \mathbf{r})$ that yield $\tau([n, \mathbf{j}_p]; \mathbf{r})$.

For a noninteracting UEG, all of the energy per electron is noninteracting kinetic energy, so

$$au^{
m phys}(n,B) = au^{
m phys}(n,0) - rac{1}{2}\chi^0_{
m L}(n)B^2$$
 ,

where $\tau^{\text{phys}}(n,B) = \sum_{k=1}^{\text{occup}} \frac{1}{2m} \psi_k^* (\frac{\hbar}{i} \nabla + \frac{e}{c} \mathbf{A})^2 \psi_k$.

Performing integration by parts on $\tau^{\text{phys}}(n, B)$ yields

$$\tau^{\text{phys}}(n,B) = \tau(n, [\mathbf{A}]; \mathbf{r}) - m \frac{|\mathbf{j}_p|^2}{2n}.$$

where $\tau(n, [\mathbf{A}]; \mathbf{r}) = \sum_{k}^{\text{occup}} \frac{\hbar^2}{2m} |\nabla \psi_k|^2$. In the absence of a vector potential, $\tau^{\text{phys}}(n, B = 0) = \tau(n, [\mathbf{A} = 0])$, so

$$\tau(n, [\mathbf{A} = 0]) = \tau(n, [\mathbf{A}]; \mathbf{r}) - m \frac{|\mathbf{j}_p|^2}{2n} - \frac{mk_{\mathrm{F}}(n)}{24\pi^2} |\boldsymbol{\nu}|^2.$$

Generalization to an inhomogeneous but slowly-varying density is

$$\tau([n, \mathbf{j}_p = 0]; \mathbf{r}) = \tau([n, \mathbf{j}_p]; \mathbf{r}) - \frac{m|\mathbf{j}_p|^2}{2n} - \frac{mk_{\mathrm{F}}}{24\pi^2} |\boldsymbol{\nu}|^2.$$

J. Tao, PRB 71, 205107 (2005); J. Tao and J.P. Perdew, PRL (to appear).

Numerical Test

 $\Delta E_{\text{tot}} = E(M_L = \pm 1) - E(M_L = 0)$ in kcal/mol for open-shell atoms. Since the Vignale-Rasolt correction is essentially a second-order gradient term, LSD has been left uncorrected. (1 kcal/mol = 0.0434 eV.)

	LSD	GGA	C-GGA	MGGA	C-MGGA
В	0.50	2.20	1.19	5.84	2.51
С	-0.13	1.95	1.26	4.77	2.26
0	0.31	4.58	1.82	10.60	3.89
F	-0.88	3.77	2.38	7.91	3.77
AI	0.06	1.13	0.06	2.82	0.69
Si	-0.75	0.44	0.19	2.01	0.82
S	-1.13	1.19	-0.13	3.26	0.38
CI	-1.13	1.32	0.88	3.26	1.78
mean	-0.39	2.07	0.96	5.06	2.01
m.a.e.	0.61	2.07	0.99	5.06	2.01

Acknowledgement

I thank Professor John P. Perdew and Professor Giovanni Vignale for many valuable discussions and suggestions. Support from the National Science Foundations (JPP and GV) is acknowledged. In particular, I thank Professor Jacek Dobaczewski, Professor Achim Schwenk, and Professor Dario Vretenar for their kind invitation and nice organization of the workshop.