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General idea

DFT is the most popular method for electronic structure calculations of a
many-electron system.

No other method achieves comparable accuracy at the same cost.

The art of constructing FEy.[ny,n;] embodies
two different philosophies:  Empiricism and
nonempiricism.

Empiricism: No hope of writing down the exact universal functional, the best
strategy is to make a guess in a parametric form and optimize it by fitting to a
set of experiments.

Nonempiricism: Fy. should be developed from first principles by incorporating
known exact constraints. If a sufficient number of such constraints is satisfied,
properties will come out right by themselves.
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Figure 1: Jacob's ladder of DFT approximations for Ey.[nt,n].



PKZB meta-GGA:

e successful in condensed matter physics and thermochemistry such as atomization
energies, but PKZB bond lengths are less accurate than those of GGA

e PKZB exchange contains an empirical parameter fitted to atomization energies

Paradigm densities:

e Condensed matter physics: Slowly-varying density (limit A)

e Quantum chemistry: One- and two-electron densities (limit B)
PKZB gives a unbalanced description of the paradigm densities:

e PKZB correlation was designed to be good in these limits.

e PK/ZB exchange was only designed to be right in limit A.

J. P. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996);
J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, PRL 82, 2544 (1999).



Meta-GGA for Exchange

e Spin-scaling relation
1 1
Exlng,n)] = SE2m] + 5 Ex[2n],
e Uniform coordinate scaling property
Ex[n,) = vExn],  n,(r) =~°n(yr)

Assumed form for meta-GGA:

Ex[n] = [ d*r ney™ (n)Fx(p, 2)

: 2
where €74 (n) = ~£(3n%n)!/*  p = = 5k 2 = 2,

T =23 TP 2V,

J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, PRL 91, 146401 (2003).
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Assumed form for enhancement factor F:

szl‘l-/f—ﬁ, z(p,z) >0, k=0.804

The assumed MGGA recovers the following behaviors:
e In the large gradient (p — o0) limit,

PBE
Fy — F,_ 77,

No new condition for the p — oo limit and thus no reason to change from the
PBE GGA in this limit.

e |n the slowly-varying limit,

10 146 73
F.—>14+—p+—qg°— — 0-p°+0O(VY.
— Lt Pt 50557 gt P OV

e Recovery of the exchange energy of the hydrogen density n; = %6_2T2
Ex[ny,0] = —U[n] = —0.3125 hartree (self-interaction free).

OF% —0

[
Os s~0.4, z=1

This condition ensures that the meta-GGA potential (unlike the GGA exchange
potential) has no divergence at the nucleus, where s ~ 0.4.



Meta-GGA for Correlation
PKZB correlation:

e PKZB correlation is a nonempirical self-interaction-free functional:

E.n,,00=0 (N =1)

e PKZB yields much more accurate low-density limit for a spin-unpolarized density
than LSD and PBE do

In the low-density limit, because electrons become
classical particles and the repulsions among
them are Coulombic, Ey.|nt,n|] should become
independent of relative spin polarization ( =

(ny —mny)/(ny +ny).

e LDA is correct
e GGA is correct

e PKZB has an incorrect dependence upon relative spin polarization ¢



TPSS correlation:
Starting from the PBE GGA, TPSS correlation is constructed by

e climinating the PBE GGA self-correlation energy as the PKZB meta-GGA does

e correcting the wrong dependence of the PKZB meta-GGA upon relative spin
polarization, while preserving other correct properties of PKZB

C

ECTPSS[nT7 nl] — /dST nerevPKZB

< [1 + dEEeVPKZB(TW/T)S],

where ege"PKZB

(ny,ny, Vg, Vny, 11, 7)) is the revised PKZB correlation and d =
2.8 hartree .

J.P. Perdew, J. Tao, V.N. Staroverov, and G.E. Scuseria, JCP 120, 6898 (2004) for detailed explanation.



Numerical Tests

Table |: Statistical summary of the errors of three density functionals for 13
properties of molecules, solids, and surfaces. 1 kcal/mol = 0.0434 eV = 0.00159
hartree. The errors of H-bond dissociation energy are in kcal /mol.

Mean value  Mean absolute errors
Property (units) Test set of property  LSD PBE TPSS
Atomiz. energy (kcal/mol)  G3/99 (223 mols.) 714 1219 222 5.8
loniz. potential (eV) G3/99 (86 species) 10.9 023 0.24 0.24
Electron affinity (eV) G3/99 (58 species) 1.41 0.24  0.12 0.14
Proton affinity (eV) G3/99 (8 mols.) 6.9 5.9 1.6 1.8
Bond length R, (A) 96 molecules 1.56 0.013 0.016 0.014
Harm. freq. w. (cm™1) 82 diatomics 1430 489 420 30.4
H-bond dissoc. energy 10 complexes 13.4 5.8 1.0 0.6
H-bond length R. (A) 11 H-bonds 2.06 0.147 0.043 0.021
H-bond angle (deg) 13 angles 111 4.0 2.6 2.0
Lattice constant (A) 18 solids 4.46 0.058 0.064 0.050
Bulk modulus (GPa) 18 solids 116 15.1 7.6 8.2
eSohesve (eV/ /atom) 8 solids 4.68 0.70 0.11  0.17
oxe (erg/cm?) rs = 26 1276 25 59 14
m.a.r.e. (%) 640 data above 16.2 5.2 4.8

(1) All calculations were performed self-consistently by the GO3 code except the surface exchange-correlation energy of
the jellium. (2) V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, JCP 119, 12129 (2003); PRB 69, 075102
(2004).

Conclusions: The overall order of accuracy is: LSD < PKZB < PBE < TPSS.



Extension to systems with orbital currents
Density functionals have a common limitation:

e |t cannot properly describe systems in the presence of a magnetic field B = VxA
which induces an orbital current of electrons. Such currents can be present even
for external vector potential A = 0, as in open-shell atoms.

e Example: B (2p!: 2p_1, 2pg, 2p1). Electrons in such an atom can occupy
different (degenerate) orbitals with the same total energy.

Since Eyc[nt,n ] fail to reproduce correct degeneracy, they avoid these currents
for A = 0 by using real (not complex) orbitals.

e Solution: Vignale and Rasolt (VR) have extended the Kohn-Sham theorems:

wkza(r> — wkﬁ()'([nO'hij']; I'); Exc — Exc[naajpa]-

For slowly-varying densities and slowly-varying currents, VR presented an additive
correction:

Exc[n, jp] = Excn,jp = 0] + AEn, V],

G. Vignale and M. Rasolt, PRL 59, 2360 (1987); PRB 37, 10685 (1988); G. Vignale, M. Rasolt, and D.J.W. Geldart,
Adv. Quantum Chem. 21, 235 (1990).



where

VR _ 3 unif " XL 2
AE/ M n,v] = /d L r— (1 — X_%> |,

v(r) =V X |jp(r)/n(r)] — gauge-invariant vorticity.

h occup

Jpo(r) = 5= > 11 Vi Ve — Yro VUL ]—paramagnetic current density.

Question: How can we construct 7(|n,0];r) for
use in FEyc[n,j, = 0] from the orbital kinetic
energy density 7(|n, j,|;r)?

Under the gauge transformation,

A—A"=A—-Vx(r),

the orbitals ;. and %; corresponding to A and A’ differ only by a phase factor,

i — P, = rexp [(ie/he)x]

and thus describe the same physical states.



Consider an interacting uniform electron gas (UEG) in the presence of a weak
uniform magnetic field B. By perturbation theory,

e(n, B) = €(n,0) — 5=x1.B? (interacting UEG),

1
’(n, B) = ’(n,0) — 2—)(%32 (noninteracting).
n

The Vignale-Rasolt second-order energy shift is

GXCR — 6XC(nv B) - 6XC(nv O) — _%(XL - X%)BQ'

For a given vector potential A(r), the physical current density j is found by

j(r) = jp(r) + (e/me)n(r)A(r).

For the UEG, j vanishes, so we have

A(r) = —mel) B _ ¢ x A = —mey,

e n

Next we shall construct 7(|n,j, = 0];r) from the orbitals ¥x([n,j,];r) that yield
7([n, Jpl; 1)



For a noninteracting UEG, all of the energy per electron is noninteracting kinetic
energy, so

PP (n, B) = 725 (n,0) — L0 (n) B,

where 7PYS(n, B) = S0P Loyt (B 4 £A )24y

Performing integration by parts on 7P™S(n, B) yields

2
phys(p, B) = Al M.
T (n,B) =71(n,[Al;r) —m o

where 7(n,[A];r) = > 77 52 2—|Vi)i|?.  In the absence of a vector potential,
Phys(n, B = 0) = 7(n, [ ]) o)

] mkr(n
(1, [A = 0]) = 7(n, [A]; 1) —m L _mhe(n) 2

Generalization to an inhomogeneous but slowly-varying density is

. i mljp|? mk
(I, 3p = 01;v) = 7([n, jpl; v) — el _ mhe 12

J. Tao, PRB 71, 205107 (2005); J. Tao and J.P. Perdew, PRL (to appear).




Numerical Test

AFit = E(Mp = £1)—FE(My = 0) in kcal/mol for open-shell atoms. Since the
Vignale-Rasolt correction is essentially a second-order gradient term, LSD has been
left uncorrected. (1 kcal/mol = 0.0434 eV.)

LSD GGA C-GGA MGGA C-MGGA

B 0.50 2.20 1.19 5.84 2.51
C -0.13 1.95 1.26 477 2.26
O 0.31 4.58 1.82 10.60 3.89
F -0.88 3.77 2.38 7.91 3.77
Al 0.06 1.13 0.06 2.82 0.69
Si -0.75 0.44 0.19 2.01 0.82
S -1.13  1.19 -0.13 3.26 0.38
Cl -1.13  1.32 0.88 3.26 1.78
mean -0.39 2.07 0.96 5.06 2.01

m.a.e. 0.61 2.07 0.99 5.06 2.01
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