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General idea

• DFT is the most popular method for electronic structure calculations of a
many-electron system.

• No other method achieves comparable accuracy at the same cost.

The art of constructing Exc[n↑, n↓] embodies
two different philosophies: Empiricism and
nonempiricism.

• Empiricism: No hope of writing down the exact universal functional, the best
strategy is to make a guess in a parametric form and optimize it by fitting to a
set of experiments.

• Nonempiricism: Exc should be developed from first principles by incorporating
known exact constraints. If a sufficient number of such constraints is satisfied,
properties will come out right by themselves.
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Figure 1: Jacob’s ladder of DFT approximations for Exc[n↑, n↓].



PKZB meta-GGA:

• successful in condensed matter physics and thermochemistry such as atomization
energies, but PKZB bond lengths are less accurate than those of GGA

• PKZB exchange contains an empirical parameter fitted to atomization energies

Paradigm densities:

• Condensed matter physics: Slowly-varying density (limit A)

• Quantum chemistry: One- and two-electron densities (limit B)

PKZB gives a unbalanced description of the paradigm densities:

• PKZB correlation was designed to be good in these limits.

• PKZB exchange was only designed to be right in limit A.

J. P. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996);

J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, PRL 82, 2544 (1999).



Meta-GGA for Exchange

• Spin-scaling relation

Ex[n↑, n↓] =
1

2
Ex[2n↑] +

1

2
Ex[2n↓],

• Uniform coordinate scaling property

Ex[nγ] = γEx[n], nγ(r) = γ3n(γr)

Assumed form for meta-GGA:

Ex[n] =
∫

d3r nεunif
x (n)Fx(p, z)

where εunif
x (n) = − 3

4π(3π2n)1/3 , p = s2 =
[

|∇n|

2(3π2)1/3n4/3

]2

, z = τW
τ ,

τ = 2
∑occup

i=1
1
2|∇ψi|

2, and τW = 1
8
|∇n|2

n .

J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, PRL 91, 146401 (2003).



Assumed form for enhancement factor Fx:

Fx = 1 + κ− κ
1+x/κ, x(p, z) ≥ 0, κ = 0.804

The assumed MGGA recovers the following behaviors:
• In the large gradient (p→ ∞) limit,

Fx → FPBE
x ,

No new condition for the p → ∞ limit and thus no reason to change from the
PBE GGA in this limit.

• In the slowly-varying limit,

Fx → 1 +
10

81
p+

146

2025
q2 −

73

146
qp+ 0 · p2 +O(∇6).

• Recovery of the exchange energy of the hydrogen density n↑ = 1
πe

−2r:
Ex[n↑, 0] = −U [n] = −0.3125 hartree (self-interaction free).

• ∂Fx
∂s

∣

∣

∣

s≈0.4, z=1
= 0.

This condition ensures that the meta-GGA potential (unlike the GGA exchange
potential) has no divergence at the nucleus, where s ≈ 0.4.



Meta-GGA for Correlation

PKZB correlation:

• PKZB correlation is a nonempirical self-interaction-free functional:

Ec[nσ, 0] = 0 (N = 1)

• PKZB yields much more accurate low-density limit for a spin-unpolarized density
than LSD and PBE do

In the low-density limit, because electrons become
classical particles and the repulsions among
them are Coulombic, Exc[n↑, n↓] should become
independent of relative spin polarization ζ =
(n↑ − n↓)/(n↑ + n↓).

• LDA is correct

• GGA is correct

• PKZB has an incorrect dependence upon relative spin polarization ζ



TPSS correlation:
Starting from the PBE GGA, TPSS correlation is constructed by

• eliminating the PBE GGA self-correlation energy as the PKZB meta-GGA does

• correcting the wrong dependence of the PKZB meta-GGA upon relative spin
polarization, while preserving other correct properties of PKZB

ETPSS
c [n↑, n↓] =

∫

d3r nεrevPKZB
c

×[1 + dεrevPKZB
c (τW/τ)3],

where εrevPKZB
c (n↑, n↓,∇n↑,∇n↓, τ↑, τ↓) is the revised PKZB correlation and d =

2.8 hartree−1.

J.P. Perdew, J. Tao, V.N. Staroverov, and G.E. Scuseria, JCP 120, 6898 (2004) for detailed explanation.



Numerical Tests

Table I: Statistical summary of the errors of three density functionals for 13
properties of molecules, solids, and surfaces. 1 kcal/mol = 0.0434 eV = 0.00159
hartree. The errors of H-bond dissociation energy are in kcal/mol.

Mean value Mean absolute errors

Property (units) Test set of property LSD PBE TPSS

Atomiz. energy (kcal/mol) G3/99 (223 mols.) 714 121.9 22.2 5.8

Ioniz. potential (eV) G3/99 (86 species) 10.9 0.23 0.24 0.24

Electron affinity (eV) G3/99 (58 species) 1.41 0.24 0.12 0.14

Proton affinity (eV) G3/99 (8 mols.) 6.9 5.9 1.6 1.8

Bond length Re (Å) 96 molecules 1.56 0.013 0.016 0.014

Harm. freq. ωe (cm−1) 82 diatomics 1430 48.9 42.0 30.4

H-bond dissoc. energy 10 complexes 13.4 5.8 1.0 0.6

H-bond length Re (Å) 11 H-bonds 2.06 0.147 0.043 0.021

H-bond angle (deg) 13 angles 111 4.0 2.6 2.0

Lattice constant (Å) 18 solids 4.46 0.058 0.064 0.050

Bulk modulus (GPa) 18 solids 116 15.1 7.6 8.2

εcohesive
0 (eV/atom) 8 solids 4.68 0.70 0.11 0.17

σxc (erg/cm2) rs = 2–6 1276 25 59 14

m.a.r.e. (%) 640 data above ... 16.2 5.2 4.8

(1) All calculations were performed self-consistently by the G03 code except the surface exchange-correlation energy of
the jellium. (2) V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, JCP 119, 12129 (2003); PRB 69, 075102

(2004).

Conclusions: The overall order of accuracy is: LSD < PKZB < PBE < TPSS.



Extension to systems with orbital currents

Density functionals have a common limitation:

• It cannot properly describe systems in the presence of a magnetic field B = ∇×A

which induces an orbital current of electrons. Such currents can be present even
for external vector potential A = 0, as in open-shell atoms.

• Example: B (2p1: 2p−1, 2p0, 2p1). Electrons in such an atom can occupy
different (degenerate) orbitals with the same total energy.

Since Exc[n↑, n↓] fail to reproduce correct degeneracy, they avoid these currents
for A = 0 by using real (not complex) orbitals.

• Solution: Vignale and Rasolt (VR) have extended the Kohn-Sham theorems:

ψkσ(r) = ψkσ([nσ, jpσ]; r); Exc = Exc[nσ, jpσ].

For slowly-varying densities and slowly-varying currents, VR presented an additive
correction:

Exc[n, jp] = Exc[n, jp = 0] + ∆EVR
xc [n,ν],

G. Vignale and M. Rasolt, PRL 59, 2360 (1987); PRB 37, 10685 (1988); G. Vignale, M. Rasolt, and D.J.W. Geldart,

Adv. Quantum Chem. 21, 235 (1990).



where

∆EVR
xc [n,ν] =

∫

d3r nεunif
x

m

18πne2

(

1 −
χL

χ0
L

)

|ν|2,

ν(r) = ∇× [jp(r)/n(r)] – gauge-invariant vorticity.

jpσ(r) = h̄
2mi

∑occup
k=1 [ψ∗

kσ∇ψkσ − ψkσ∇ψ
∗
kσ]–paramagnetic current density.

Question: How can we construct τ([n, 0]; r) for
use in Exc[n, jp = 0] from the orbital kinetic
energy density τ([n, jp]; r)?

Under the gauge transformation,

A → A′ = A−∇χ(r),

the orbitals ψk and ψ
′

k corresponding to A and A′ differ only by a phase factor,

ψk → ψ
′

k = ψkexp [(ie/h̄c)χ]

and thus describe the same physical states.



Consider an interacting uniform electron gas (UEG) in the presence of a weak
uniform magnetic field B. By perturbation theory,

ε(n,B) = ε(n, 0) − 1
2nχLB

2 (interacting UEG),

ε0(n,B) = ε0(n, 0) −
1

2n
χ0

LB
2 (noninteracting).

The Vignale-Rasolt second-order energy shift is

εVR
xc = εxc(n,B) − εxc(n, 0) = − 1

2n(χL − χ0
L)B2.

For a given vector potential A(r), the physical current density j is found by

j(r) = jp(r) + (e/mc)n(r)A(r).

For the UEG, j vanishes, so we have

A(r) = −mc
e

jp(r)
n , B = ∇×A = −mc

e ν.

Next we shall construct τ([n, jp = 0]; r) from the orbitals ψk([n, jp]; r) that yield
τ([n, jp]; r).



For a noninteracting UEG, all of the energy per electron is noninteracting kinetic
energy, so

τphys(n,B) = τphys(n, 0) − 1
2χ

0
L(n)B2,

where τphys(n,B) =
∑occup

k
1

2mψ
∗
k(

h̄
i∇ + e

cA)2ψk.

Performing integration by parts on τphys(n,B) yields

τphys(n,B) = τ(n, [A]; r) −m
|jp|

2

2n
.

where τ(n, [A]; r) =
∑occup

k
h̄2

2m|∇ψk|
2. In the absence of a vector potential,

τphys(n,B = 0) = τ(n, [A = 0]), so

τ(n, [A = 0]) = τ(n, [A]; r)−m
|jp|

2

2n −mkF(n)
24π2 |ν|2.

Generalization to an inhomogeneous but slowly-varying density is

τ([n, jp = 0]; r) = τ([n, jp]; r)−
m|jp|

2

2n − mkF
24π2|ν|

2.

J. Tao, PRB 71, 205107 (2005); J. Tao and J.P. Perdew, PRL (to appear).



Numerical Test

∆Etot = E(ML = ±1)−E(ML = 0) in kcal/mol for open-shell atoms. Since the
Vignale-Rasolt correction is essentially a second-order gradient term, LSD has been
left uncorrected. (1 kcal/mol = 0.0434 eV.)

LSD GGA C-GGA MGGA C-MGGA
B 0.50 2.20 1.19 5.84 2.51
C -0.13 1.95 1.26 4.77 2.26
O 0.31 4.58 1.82 10.60 3.89
F -0.88 3.77 2.38 7.91 3.77
Al 0.06 1.13 0.06 2.82 0.69
Si -0.75 0.44 0.19 2.01 0.82
S -1.13 1.19 -0.13 3.26 0.38
Cl -1.13 1.32 0.88 3.26 1.78
mean -0.39 2.07 0.96 5.06 2.01
m.a.e. 0.61 2.07 0.99 5.06 2.01
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